scholarly journals High-Precision Radial Velocities of Southern Solar-Type Stars

1992 ◽  
Vol 135 ◽  
pp. 167-169 ◽  
Author(s):  
Kaylene Murdoch ◽  
J.B. Hearnshaw

AbstractWith a small telescope and conventional techniques we have achieved external radial-velocity errors for bright stars of only ±50 m/s by using an optical fibre feed between telescope and spectrograph. In a search for low-mass companions to solar-type dwarf stars, intrinsic radial-velocity variability was detected in some IAU radial-velocity standard stars but no convincing evidence was found of the presence of low-mass companions to the dwarfs.

2020 ◽  
Vol 638 ◽  
pp. A54 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. Stellar variability due to magnetic activity and flows at different spatial scales strongly impacts radial velocities. This variability is seen as oscillations, granulation, supergranulation, and meridional flows. The effect of this latter process is currently poorly known but could affect exoplanet detectability. Aims. We aim to quantify the amplitude of the meridional flow integrated over the disc and its temporal variability, first for the Sun, as seen with different inclinations, and then for other solar-type stars. We then want to compare these amplitudes with low-mass exoplanetary amplitudes in radial velocity. Methods. We used long time series (covering two 11-yr cycles) of solar latitudinal meridional circulation to reconstruct its integrated contribution and study its properties. We then used scaling laws from hydrodynamical simulations relating the amplitude of the meridional flow variability with stellar mass and rotation rate to estimate the typical amplitude expected for other solar-type stars. Results. We find typical rms of the order of 0.5–0.7 m s−1 (edge-on) and 1.2–1.7 m s−1 (pole-on) for the Sun (peak-to-peak amplitudes are typically 1–1.4 m s−1 and 2.3–3.3 m s−1 resp.), with a minimal jitter for an inclination of 45–55°. This signal is significant compared to other stellar activity contributions and is much larger than the radial-velocity signal of the Earth. The variability is strongly related to the activity cycle, with maximum flows during the descending phase of the cycle, and possible variability on timescales lower than the cycle period. Extension to other solar-type stars shows that the variability due to meridional flows is dominated by the amplitude of the cycle of those stars (compared with mass and rotation rate), and that the peak-to-peak amplitudes can reach 4 m s−1 for the most variable stars when seen pole-on. The meridional flow contribution sometimes represents a high fraction of the convective blueshift inhibition signal, especially for quiet, low-mass stars. For fast-rotating stars, the presence of multi-cellular patterns should significantly decrease the meridional flow contribution to the radial-velocity signal. Conclusions. Our study shows that these meridional flows could be critical for exoplanet detection. Low inclinations are more impacted than edge-on configurations, but these latter still exhibit significant variability. Meridional flows also degrade the correlation between radial velocities due to convective blueshift inhibition and chromospheric activity indicators. This will make the correction from this signal challenging for stars with no multi-cellular patterns, such as the Sun for example, although there may be some configurations for which the line shape variations may be used if the precision is sufficient.


2010 ◽  
Vol 6 (S276) ◽  
pp. 527-529
Author(s):  
Xavier Dumusque ◽  
Nuno C. Santos ◽  
Stéphane Udry ◽  
Cristophe Lovis ◽  
Xavier Bonfils

AbstractSpectrographs like HARPS can now reach a sub-ms−1 precision in radial-velocity (RV) (Pepe & Lovis 2008). At this level of accuracy, we start to be confronted with stellar noise produced by 3 different physical phenomena: oscillations, granulation phenomena (granulation, meso- and super-granulation) and activity. On solar type stars, these 3 types of perturbation can induce ms−1 RV variation, but on different time scales: 3 to 15 minutes for oscillations, 15 minutes to 1.5 days for granulation phenomena and 10 to 50 days for activity. The high precision observational strategy used on HARPS, 1 measure per night of 15 minutes, on 10 consecutive days each month, is optimized, due to a long exposure time, to average out the noise coming from oscillations (Dumusque et al. 2011a) but not to reduce the noise coming from granulation and activity (Dumusque et al. 2011a and Dumusque et al. 2011b). The smallest planets found with this strategy (Mayor et al. 2009) seems to be at the limit of the actual observational strategy and not at the limit of the instrumental precision. To be able to find Earth mass planets in the habitable zone of solar-type stars (200 days for a K0 dwarf), new observational strategies, averaging out simultaneously all type of stellar noise, are required.


1998 ◽  
Vol 11 (1) ◽  
pp. 564-564
Author(s):  
D. Dravins ◽  
L. Lindegren ◽  
S. Madsen ◽  
J. Holmberg

Abstract Space astrometry now permits accurate determinations of stellar radial motion, without using spectroscopy. Although the feasibility of deducing astrometric radial velocities from geometric projection effects was realized already by Schlesinger (1917), only with Hipparcos has it become practical. Such a program has now been carried out for the moving clusters of Ursa Major, Hyades, and Coma Berenices. Realized inaccuracies reach about 300 m/s (Dravins et al. 1997). Discrepancies between astrometric and spectroscopic radial velocities reveal effects (other than stellar motion) that affect wavelength positions of spectral lines. Such are caused by stellar surface convection, and by gravitational redshifts. A parallel program (Gullberg & Dravins 1997) is analyzing high-precision spectroscopic radial velocities for different spectral lines in these stars, using the ELODIE radial-velocity instrument atHaute-Provence.


2010 ◽  
Vol 6 (S276) ◽  
pp. 530-532 ◽  
Author(s):  
Xavier Dumusque ◽  
Cristophe Lovis ◽  
Stephane Udry ◽  
Nuno C. Santos

AbstractFor the 451 stars of the HARPS high precision program, we study correlations between the radial-velocity (RV) variation and other parameters of the Cross Correlated Function (CCF). After a careful target selection, we found a very good correlation between the slope of the RV-activity index (log(R'HK)) correlation and the Teff for dwarf stars. This correlation allow us to correct RV from magnetic cycles given the activity index and the Teff.


2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


1998 ◽  
Vol 11 (1) ◽  
pp. 564-564
Author(s):  
D. Gullberg ◽  
D. Dravins

Wavelengths of stellar spectral lines depend not only on the star’s motion. Until recently, accurate studies of shifts not caused by radial motion were feasible only for the Sun. Solar lineshifts are interpreted as gravitational redshift (636 m/s) and convective blueshifts (~ 400 m/s; caused by velocity-brightness correlations). In other stars, such effects may be greater (Dravins & Nordlund 1990). Accurate astrometric radial velocities are now available from Hipparcos (Dravins et al. 1997a; 1997b), permitting studies of such shifts also in some other stars. For such stars in the open clusters of Hyades, Ursa Major and Coma Berenices, a spectroscopic program is in progress, analyzing wavelength shifts in groups of lines with different strengths, excitation potentials, etc., using the ELODIE high-precision radial-velocity instrument (Baranne et al. 1996) at Haute-Provence Observatory.


2020 ◽  
Vol 644 ◽  
pp. A77
Author(s):  
N. Meunier ◽  
A.-M. Lagrange ◽  
S. Borgniet

Context. Stellar activity strongly affects and may prevent the detection of Earth-mass planets in the habitable zone of solar-type stars with radial velocity technics. Astrometry is in principle less sensitive to stellar activity because the situation is more favourable: the stellar astrometric signal is expected to be fainter than the planetary astrometric signal compared to radial velocities. Aims. We quantify the effect of stellar activity on high-precision astrometry when Earth-mass planets are searched for in the habitable zone around old main-sequence solar-type stars. Methods. We used a very large set of magnetic activity synthetic time series to characterise the properties of the stellar astrometric signal. We then studied the detectability of exoplanets based on different approaches: first based on the theoretical level of false positives derived from the synthetic time series, and then with blind tests for old main-sequence F6-K4 stars. Results. The amplitude of the signal can be up to a few times the solar value depending on the assumptions made for activity level, spectral type, and spot contrast. The detection rates for 1 MEarth planets are very good, however, with extremely low false-positive rates in the habitable zone for stars in the F6-K4 range at 10 pc. The standard false-alarm probability using classical bootstrapping on the time series strongly overestimates the false-positive level. This affects the detection rates. Conclusions. We conclude that if technological challenges can be overcome and very high precision is reached, astrometry is much more suitable for detecting Earth-mass planets in the habitable zone around nearby solar-type stars than radial velocity, and detection rates are much higher for this range of planetary masses and periods when astrometric techniques are used than with radial velocity techniques.


1988 ◽  
Vol 126 ◽  
pp. 523-524
Author(s):  
Kyle Cudworth ◽  
Ruth C. Peterson

With high-precision radial velocities and proper motions, one can equate the proper motion and radial velocity dispersions to obtain astrometric distances independent of any standard candles. We discuss the method and the small distance it yields to M 22.


Sign in / Sign up

Export Citation Format

Share Document