scholarly journals Aperture Synthesis imaging from the Moon

1991 ◽  
Vol 131 ◽  
pp. 420-427 ◽  
Author(s):  
Jack O. Burns

AbstractFour candidate imaging aperture synthesis concepts are described for possible emplacement on the Moon beginning in the next decade. These include an optical interferometer with 10 μarcsec resolution, a submillimeter array with 6 milliarcsec resolution, a Moon- Earth VLBI experiment, and a very low frequency interferometer in lunar orbit.

1995 ◽  
Vol 166 ◽  
pp. 347-350
Author(s):  
S. Volonte

The Moon is generally considered to be an ideal site for astronomy, offering excellent observing conditions and access to the entire electromagnetic and particle spectrum. A wide range of astronomical observations can be carried out from the Moon, but, as concluded in a recent ESA study (Mission to the Moon 1992), only a restricted number could be better implemented from a lunar site rather than from any other location. Very low frequency (VLF) astronomy, astrometry and interferometry fall into this category, as well as a transit telescope to map dark matter in the Universe. Whilst VLF and astrometric telescopes should be automatic, long baseline interferometers will probably require human intervention and will thus benefit from a manned lunar base.


2018 ◽  
Vol 27 (14) ◽  
pp. 1847021
Author(s):  
Andri Gretarsson ◽  
Preston Jones ◽  
Douglas Singleton

In this essay, we look at the possibility of vacuum production of very low frequency electromagnetic radiation from a gravitational wave background (i.e. gravity’s light). We also propose that this counterpart electromagnetic radiation should be detectable by a lunar orbiting satellite which is periodically occulted by the Moon (i.e. in the shadow of the Moon). For concreteness, we consider the possibility of detection of both the gravitational wave and hypothesized electromagnetic radiation counterpart from the supernova core collapse of Betelgeuse.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


1988 ◽  
Author(s):  
Wayne I. Klemetti ◽  
Paul A. Kossey ◽  
John E. Rasmussen ◽  
Maria Sueli Da Silveira Macedo Moura

Sign in / Sign up

Export Citation Format

Share Document