scholarly journals Variations of the Coronal Radiation in X-ray Related to Coronal Holes, Active Region Loop Systems, Bright Points

1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.

2021 ◽  
Author(s):  
Prantika Bhowmik ◽  
Anthony Yeates

<p>During Solar Minimum, the Sun is perceived to be quite inactive with barely any spots emerging on the solar surface. Consequently, we observe a drop in the number of highly energetic events such as solar flares and coronal mass ejections (CMEs), which are often associated with active regions on the photosphere. However, our magnetofrictional simulations during the minimum period suggest that the solar corona could still be significantly dynamic while evolving in response to the large-scale shearing velocities on the solar surface. The non-potential evolution of the corona leads to the accumulation of magnetic free energy and helicity, which is periodically lost through eruptive events. Our study shows that these events can be categorised into two distinct classes. One set of events are caused due to full-scale eruption of low-lying coronal flux ropes and could be associated with occasional filament erupting CMEs observed during Solar Minimum. The other set of events are not driven by destabilisation of low-lying structures but rather by eruption from overlying sheared arcades. These could be linked with streamer blowouts or stealth CMEs. The two classes differ considerably in the amount of magnetic flux and helicity shed through the outer coronal boundary. We additionally investigate how other measurables such as current, open magnetic flux, free energy, coronal holes area, and the horizontal component of the magnetic field on the outer model boundary vary during the two classes of event. This study demonstrates and emphasises the importance and necessity of understanding the dynamics of the coronal magnetic field during Solar Minimum.</p>


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
David Stansby ◽  
Lucie M. Green ◽  
Lidia van Driel-Gesztelyi ◽  
Timothy S. Horbury

AbstractBoth coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we use photospheric magnetic field maps observed over the past four solar cycles to estimate what fraction of magnetic open solar flux is rooted in active regions, a proxy for the fraction of all solar wind originating in active regions. We find that the fractional contribution of active regions to the solar wind varies between 30% to 80% at any one time during solar maximum and is negligible at solar minimum, showing a strong correlation with sunspot number. While active regions are typically confined to latitudes ±30∘ in the corona, the solar wind they produce can reach latitudes up to ±60∘. Their fractional contribution to the solar wind also correlates with coronal mass ejection rate, and is highly variable, changing by ±20% on monthly timescales within individual solar maxima. We speculate that these variations could be driven by coronal mass ejections causing reconfigurations of the coronal magnetic field on sub-monthly timescales.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


1998 ◽  
Vol 167 ◽  
pp. 380-383
Author(s):  
E. Hiei

AbstractDB (disparition brusque) events are associated with dynamic phenomena such as a CME, a flare, brightening of a soft X-ray arcade, and soft X-ray dimming, and probably a change of the coronal magnetic field on a large scale. The DB event observed on January 16, 1993 identified with a CME occurred on the solar disk.


1974 ◽  
Vol 57 ◽  
pp. 501-504 ◽  
Author(s):  
G. S. Vaiana ◽  
A. S. Krieger ◽  
J. K. Silk ◽  
A. F. Timothy ◽  
R. C. Chase ◽  
...  

Data obtained by the AS&E X-ray Telescope Experiment during the first Skylab mission have revealed a variety of temporal changes in both the form and brightness of coronal structures. Dynamical changes have been noted in active regions, in large scale coronal structures, and in coronal bright points. The coronal activity accompanying a series of Hα flares and prominence activity between 0800 and 1600 UT on 10 June 1973 in active region 137 (NOAA) at the east limb is shown in Figure 1. It is characterized by increases in the brightness and temperature of active region loops and a dramatic change in the shape and brightness of a loop structure. Figure 2 shows the reconfiguration of an apparent polar crown filament cavity between 1923 UT on 12 June 1973 and 1537 UT on 13 June 1973. A ridge of emitting material which attains a peak brightness at least four times that of the surrounding coronal structures appears within the cavity during the course of the event. Typical X-ray photographs with filters passing relatively soft X-ray wavelengths (3–32, 44–54 Å) show 90 to 100 X-ray bright points (Vaiana et al., 1973). On twelve occasions in the data from the first mission, such bright points were seen to increase in intensity by two orders of magnitude in less than 4 min. Such an event is shown in Figure 3.


2013 ◽  
Vol 8 (S300) ◽  
pp. 239-242 ◽  
Author(s):  
Giannina Poletto ◽  
Alphonse C. Sterling ◽  
Stefano Pucci ◽  
Marco Romoli

AbstractBlowout jets constitute about 50% of the total number of X-ray jets observed in polar coronal holes. In these events, the base magnetic loop is supposed to blow open in what is a scaled-down representation of two-ribbon flares that accompany major coronal mass ejections (CMEs): indeed, miniature CMEs resulting from blowout jets have been observed. This raises the question of the possible contribution of this class of events to the solar wind mass and energy flux. Here we make a first crude evaluation of the mass contributed to the wind and of the energy budget of the jets and related miniature CMEs, under the assumption that small-scale events behave as their large-scale analogs. This hypothesis allows us to adopt the same relationship between jets and miniature-CME parameters that have been shown to hold in the larger-scale events, thus inferring the values of the mass and kinetic energy of the miniature CMEs, currently not available from observations. We conclude our work estimating the mass flux and the energy budget of a blowout jet, and giving a crude evaluation of the role possibly played by these events in supplying the mass and energy that feeds the solar wind.


1979 ◽  
Vol 32 (6) ◽  
pp. 671 ◽  
Author(s):  
JH Piddington

Solar ephemeral active regions may provide a larger amount of emerging magnetic flux than the active regions themselves, and the origin and disposal of this flux pose problems. The related X-ray bright points are a major feature of coronal dynamics, and the two phenomena may entail a revision of our ideas of the activity cycle. A new large-scale subsurface magnetic field system has been suggested, but it is shown that such a system is neither plausible nor necessary. The emerging magnetic bipoles merely represent loops in pre-existing vertical flux tubes which are parts of active regions or the remnants of active regions. These loops result from the kink (or helical) instability in a twisted flux tube. Their observed properties are explained in terms of the flux-rope theory of solar fields. The model is extended to some dynamical effects in emerging loops. Further observations of ephemeral active regions may provide important tests between the traditional and flux-rope theories of solar magnetic fields.


2019 ◽  
Vol 627 ◽  
pp. A9 ◽  
Author(s):  
C. Sasso ◽  
R. F. Pinto ◽  
V. Andretta ◽  
R. A. Howard ◽  
A. Vourlidas ◽  
...  

The magnetic field shapes the structure of the solar corona, but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (such as streamers, plumes, and coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify whether this comparison can be a fast method to systematically determine the reliability of the many methods that are available for modeling the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements that are typically obtained in a region close to the central meridian on the solar disk and are then compared with coronagraphic images at the limbs, acquired at least seven days before or after to account for solar rotation. This implicitly assumes that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) that observe the Sun from different viewing angles to build Carrington maps that cover the entire corona to reduce the effect of temporal evolution to about five days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to distinguish between different magnetic field extrapolations.


Sign in / Sign up

Export Citation Format

Share Document