scholarly journals Prominence Disappearance Related to CMEs

1998 ◽  
Vol 167 ◽  
pp. 380-383
Author(s):  
E. Hiei

AbstractDB (disparition brusque) events are associated with dynamic phenomena such as a CME, a flare, brightening of a soft X-ray arcade, and soft X-ray dimming, and probably a change of the coronal magnetic field on a large scale. The DB event observed on January 16, 1993 identified with a CME occurred on the solar disk.

1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


1999 ◽  
Vol 521 (2) ◽  
pp. 868-877 ◽  
Author(s):  
L. A. Fisk ◽  
T. H. Zurbuchen ◽  
N. A. Schwadron

2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


1971 ◽  
Vol 43 ◽  
pp. 609-615 ◽  
Author(s):  
G. Daigne ◽  
M. F. Lantos-Jarry ◽  
M. Pick

It is possible to deduce information concerning large scale coronal magnetic field patterns from the knowledge of the location of radioburst sources.As the method concerns active centers responsible for corpuscular emission, the knowledge of these structures may have important implications in the understanding of corpuscular propagation in the corona and in the interplanetary medium.


2007 ◽  
Vol 3 (S247) ◽  
pp. 243-250
Author(s):  
I. Ballai ◽  
M. Douglas

AbstractObservations in EUV lines of the solar corona revealed large scale propagating waves generated by eruptive events able to travel across the solar disk for large distances. In the low corona, CMEs are known to generate, e.g. EIT waves which can be used to sample the coronal local and global magnetic field. This contribution presents theoretical models for finding values of magnetic field in the quiet Sun and coronal loops based on the interaction of global waves and local coronal loops as well as results on the generation and propagation of EIT waves. The physical connection between local and global solar coronal events (e.g. flares, EIT waves and coronal loop oscillations) will also be explored.


2008 ◽  
Vol 4 (S257) ◽  
pp. 251-255
Author(s):  
Cristiana Dumitrache

AbstractA CME is triggered by the disappearance of a stable equilibrium as a result of the slow evolution of the photospheric magnetic field. This disappearance may be due to a loss of ideal-MHD equilibrium or stability as in the kink mode, or to a loss of resistive-MHD equilibrium as a result of magnetic reconnection. We have obtained CMEs in sequence by a time dependent magnetohydrodynamic computation performed on three solar radii. These successive CMEs resulted from a prominence eruption. Velocities of these CMEs decrease in time, from a CME to another. We present observational evidences for large-scale magnetic reconnections that caused the destabilization of a sigmoid filament. These reconnections covered half of the solar disk and produced CMEs in squall (sequential CMEs).


1979 ◽  
Vol 32 (6) ◽  
pp. 671 ◽  
Author(s):  
JH Piddington

Solar ephemeral active regions may provide a larger amount of emerging magnetic flux than the active regions themselves, and the origin and disposal of this flux pose problems. The related X-ray bright points are a major feature of coronal dynamics, and the two phenomena may entail a revision of our ideas of the activity cycle. A new large-scale subsurface magnetic field system has been suggested, but it is shown that such a system is neither plausible nor necessary. The emerging magnetic bipoles merely represent loops in pre-existing vertical flux tubes which are parts of active regions or the remnants of active regions. These loops result from the kink (or helical) instability in a twisted flux tube. Their observed properties are explained in terms of the flux-rope theory of solar fields. The model is extended to some dynamical effects in emerging loops. Further observations of ephemeral active regions may provide important tests between the traditional and flux-rope theories of solar magnetic fields.


1993 ◽  
Vol 141 ◽  
pp. 366-368
Author(s):  
Jia-Long Wang

AbstractAn investigation of the statistical behaviour of solar flares responsible for the proton events detected at the earth orbit would be of significance for solar physics and sun-earth research. Based on the data given by Kunches (1992) and other relevant data, we study the statistical behaviour of solar proton flares. The asymmetry of distributions, special property of hard X-ray bursts and relation to the large scale mean magnetic field of the proton flares are given in this paper.


Sign in / Sign up

Export Citation Format

Share Document