Coronal Holes and Background Magnetic Fields on the Sun

1994 ◽  
Vol 144 ◽  
pp. 61-64 ◽  
Author(s):  
N. N. Stepanian

AbstractSize, lifetime and rotational rate of coronal holes (CH) and their connection with background magnetic field (BMF) structures were studied on the base of Solar Geophysical Data (1977-1987).Mean sizes of CH are (1-3) × 1011cm, changing with solar cycle and latitude. Mean life time is 5 rotations. Only small part of CH has rigid rotation. Most of them show differential rotation. CH appear in structures of BMF with the sign of polar magnetic field of corresponding hemisphere about 5-10 rotations after polar field reversal. Rotation rates of CH and BMF near the solar equator are almost the same. Rotational rate of BMF falls with latitude faster than the CH rate. Rotation differential of CH changes with solar cycle, BMF has no such connection.These results speak about different nature of BMF and CH, and the different depth of their sources. The source of CH is located deeper than that of the background magnetic field.

2009 ◽  
Vol 35 (6) ◽  
pp. 424-431 ◽  
Author(s):  
B. A. Ioshpa ◽  
V. N. Obridko ◽  
V. E. Chertoprud

2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2021 ◽  
Vol 922 (2) ◽  
pp. 188
Author(s):  
L.-L. Zhao ◽  
G. P. Zank ◽  
J. S. He ◽  
D. Telloni ◽  
L. Adhikari ◽  
...  

Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.


2020 ◽  
Vol 642 ◽  
pp. A233
Author(s):  
R. Sharma ◽  
C. Cid

Context. Active regions in close proximity to coronal holes, also known as anemone regions, are the best candidates for studying the interaction between closed and open magnetic field topologies at the Sun. Statistical investigation of their source-region characteristics can provide vital clues regarding their possible association with energetic events, relevant from space weather perspectives. Aims. The main goal of our study is to understand the distinct properties of flaring and non-flaring anemone active regions and their host coronal holes, by examining spatial and magnetic field distributions during the rise phase of the solar cycle, in the years 2011–2014. Methods. Anemone regions were identified from the minimum-distance threshold, estimated using the data available in the online catalogs for on-disk active regions and coronal holes. Along with the source-region area and magnetic field characteristics, associated filament and flare cases were also located. Regions with and without flare events were further selected for a detailed statistical examination to understand the major properties of the energetic events, both eruptive and confined, at the anemone-type active regions. Results. Identified anemone regions showed weak asymmetry in their spatial distribution over the solar disk, with yearly average independent from mean sunspot number trend, during the rise phase of solar cycle 24. With the progression in solar cycle, the area and minimum-distance parameters indicated a decreasing trend in their magnitudes, while the magnetic field characteristics indicated an increase in their estimated magnitudes. More than half of the regions in our database had an association with a filament structure, and nearly a third were linked with a magnetic reconnection (flare) event. Anemone regions with and without flares had clear distinctions in their source-region characteristics evident from the distribution of their properties and density analysis. The key differences included larger area and magnetic field magnitudes for flaring anemone regions, along with smaller distances between the centers of the active region and its host coronal hole.


1998 ◽  
Vol 167 ◽  
pp. 493-496
Author(s):  
Dmitri I. Ponyavin

AbstractA technique is used to restore the magnetic field of the Sun viewed as star from the filament distribution seen on Hα photographs. For this purpose synoptic charts of the large-scale magnetic field reconstructed by the McIntosh method have been compared with the Sun-asstar solar magnetic field observed at Stanford. We have established a close association between the Sun-as-star magnetic field and the mean magnetic field inferred from synoptic magnetic field maps. A filtering technique was applied to find correlations between the Sun-as-star and large-scale magnetic field distributions during the course of a solar cycle. The correlations found were then used to restore the Sun-as-star magnetic field and its evolution in the late 1950s and 1960s, when such measurements of the field were not being made. A stackplot display of the inferred data reveals large-scale magnetic field organization and evolution. Patterns of the Sun-as-star magnetic field during solar cycle 19 were obtained. The proposed technique can be useful for studying the solar magnetic field structure and evolution during times with no direct observations.


2019 ◽  
Vol 629 ◽  
pp. A22 ◽  
Author(s):  
Stefan J. Hofmeister ◽  
Dominik Utz ◽  
Stephan G. Heinemann ◽  
Astrid Veronig ◽  
Manuela Temmer

In this study, we investigate in detail the photospheric magnetic structure of 98 coronal holes using line-of-sight magnetograms of SDO/HMI, and for a subset of 42 coronal holes using HINODE/SOT G-band filtergrams. We divided the magnetic field maps into magnetic elements and quiet coronal hole regions by applying a threshold at ±25 G. We find that the number of magnetic bright points in magnetic elements is well correlated with the area of the magnetic elements (cc = 0.83 ± 0.01). Further, the magnetic flux of the individual magnetic elements inside coronal holes is related to their area by a power law with an exponent of 1.261 ± 0.004 (cc = 0.984 ± 0.001). Relating the magnetic elements to the overall structure of coronal holes, we find that on average (69 ± 8)% of the overall unbalanced magnetic flux of the coronal holes arises from long-lived magnetic elements with lifetimes > 40 h. About (22 ± 4)% of the unbalanced magnetic flux arises from a very weak background magnetic field in the quiet coronal hole regions with a mean magnetic field density of about 0.2−1.2 G. This background magnetic field is correlated to the flux of the magnetic elements with lifetimes of > 40 h (cc = 0.88 ± 0.02). The remaining flux arises from magnetic elements with lifetimes < 40 h. By relating the properties of the magnetic elements to the overall properties of the coronal holes, we find that the unbalanced magnetic flux of the coronal holes is completely determined by the total area that the long-lived magnetic elements cover (cc = 0.994 ± 0.001).


1983 ◽  
Vol 102 ◽  
pp. 273-278 ◽  
Author(s):  
N.R. Sheeley ◽  
J.P. Boris ◽  
T.R. Young ◽  
C.R. DeVore ◽  
K.L. Harvey

A computational model, based on diffusion, differential rotation, and meridional circulation, has been developed to simulate the transport of magnetic flux on the Sun. Using Kitt Peak magnetograms as input, we have determined a best-fit diffusion constant by comparing the computed and observed fields at later times. Our value of 730 ± 250 km2/s is consistent with Leighton's (1964) estimate of 770–1540 km2/s and is significantly larger than Mosher's (1977) estimate of 200–400 km2/s. This suggests that diffusion may be fast enough to account for the observed polar magnetic field reversal without requiring a significant assist from meridional currents.


2018 ◽  
Vol 619 ◽  
pp. A5 ◽  
Author(s):  
K. Barczynski ◽  
H. Peter ◽  
L. P. Chitta ◽  
S. K. Solanki

Context. The emission of the upper atmosphere of the Sun is closely related to magnetic field concentrations at the solar surface. Aims. It is well established that this relation between chromospheric emission and magnetic field is nonlinear. Here we investigate systematically how this relation, characterised by the exponent of a power-law fit, changes through the atmosphere, from the upper photosphere through the temperature minimum region and chromosphere to the transition region. Methods. We used spectral maps from the Interface Region Imaging Spectrograph (IRIS) covering Mg II and its wings, C II, and Si IV together with magnetograms and UV continuum images from the Solar Dynamics Observatory. After a careful alignment of the data we performed a power-law fit for the relation between each pair of observables and determine the power-law index (or exponent) for these. This was done for different spatial resolutions and different features on the Sun. Results. While the correlation between emission and magnetic field drops monotonically with temperature, the power-law index shows a hockey-stick-type variation: from the upper photosphere to the temperature-minimum it drops sharply and then increases through the chromosphere into the transition region. This is even seen through the features of the Mg II line, this is, from k1 to k2 and k3. It is irrespective of spatial resolution or whether we investigate active regions, plage areas, quiet Sun, or coronal holes. Conclusions. In accordance with the general picture of flux–flux relations from the chromosphere to the corona, above the temperature minimum the sensitivity of the emission to the plasma heating increases with temperature. Below the temperature minimum a different mechanism has to govern the opposite trend of the power-law index with temperature. We suggest four possibilities, in other words, a geometric effect of expanding flux tubes filling the available chromospheric volume, the height of formation of the emitted radiation, the dependence on wavelength of the intensity-temperature relationship, and the dependence of the heating of flux tubes on the magnetic flux density.


1991 ◽  
Vol 130 ◽  
pp. 266-267
Author(s):  
I. Sattarov ◽  
A. Hojaev

The most widely used indicator of the stellar magnetic activity is the flux in the CaII K-line core (K-index) (Baliunas and Vaughan, 1985). The K-index data have also been used for measuring the rotation of stars. But using the method for the Sun gives different results (Keil and Worden, 1984; Singh and Livingston, 1987). The reason for the observed differences, besides those indicated by Singh and Livingston, may be the character of the distribution of active regions. This study is based on observations made at Tashkent Astronomical Observatory and the data published in SGD for solar cycle 21. We study the longitudional distribution of sunspots and plages. Some intervals of active longitudes (IAL) were selected and the evolution of them was studied. Active regions were found to concentrate in certain longitude intervals which are in nearly rigid rotation. Fig. 1 shows the longitudinal distribution of sunspots areas for 1983-84, as an example.


Sign in / Sign up

Export Citation Format

Share Document