scholarly journals The Benefit of Archival Research in Investigating Dwarf Novae

1995 ◽  
Vol 151 ◽  
pp. 282-284
Author(s):  
C. la Dous

Dwarf novae and nova-like stars are a sub-group of the class of cataclysmic variables. Most of these stars show high and low brightness states (maxima or outbursts and minima or quiescent states, respectively). They all are short-period interacting binaries consisting of a white dwarf primary, a late-type Roche-lobe filling secondary, and an accretion disk around the white dwarf. For details on observations of cataclysmic variables and their theoretical explanations and modelling, the interested reader is referred to recent reviews.The main problem when trying to understand these systems is the wealth of patterns presented by the whole group: no two objects are nearly identical and it is hard to say which the ‘typical’ features are. As a result of this, from an individual observation, or from observations of a few systems only, it is not possible to decide which of the observed features are characteristic of the entire class, and which are specific of individual members. The only way is to investigate many different members of the same class, arrange them according to their different physical parameters, and try to determine what the general characteristics are.

1986 ◽  
Vol 89 ◽  
pp. 249-267
Author(s):  
F. Meyer

In this article we discuss two instabilities of stationary accretion disks which lead to an understanding of observed light variations in accretion disk systems, the dwarf novae and the rapid burster MXB 17030-335. The accretion disks in these systems avoid instability at the cost of stationarity and perform stable cycles in which sudden changes of the accretion flow lead to corresponding, often dramatic, variations of their accretion luminosity.Figure 1 shows a light curve of U Geminorum. It was discovered In 1855 by J.R. Hind and has become a prototype of the dwarf novae. In these systems an extended time of quiescence of up to several weeks Is followed by a short outburst of a few days during which the luminosity rises by a factor of 30 to 100. The dwarf novae belong to the cataclysmic variables. They are all close binaries In which a white dwarf primary is orbited by a Roche lobe-filling low mass secondary. Through the inner Lagrangian point mass flows over from the secondary and forms a luminious accretion disk around the white dwarf. In the case of the dwarf novae this disk has temperatures below about 10000K in Its outer region. It will be discussed how partial lonizatlon and convection then affect the vertical structure of the disk such that the stationary flow becomes unstable.Fig. 1. Light curve of the dwarf nova U Geminorum. Abszissa in days С [2])


1988 ◽  
Vol 108 ◽  
pp. 238-239
Author(s):  
Yoji Osaki ◽  
Masahito Hirose

SU UMa stars are one of subclasses of dwarf novae. Dwarf novae are semi-detached close binary systems in which a Roche-lobe filling red dwarf secondary loses matter and the white dwarf primary accretes it through the accretion disk. The main characteristics of SU UMa subclass is that they show two kinds of outbursts: normal outbursts and superoutbursts. In addition to the more frequent narrow outbursts of normal dwarf nova, SU UMa stars exhibit “superoutbursts”, in which stars reach about 1 magnitude brighter and stay longer than in normal outburst. Careful photometric studies during superoutburst have almost always revealed the “superhumps”: periodic humps in light curves with a period very close to the orbital period of the system. However, the most curious of all is that this superhump period is not exactly equal to the orbital period, but it is always longer by a few percent than the orbital period.


2004 ◽  
Vol 193 ◽  
pp. 382-386 ◽  
Author(s):  
Brian Warner ◽  
Patrick A. Woudt

AbstractThere are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of the Sloan Digital Sky Survey more than 30 should be known.


1991 ◽  
Vol 130 ◽  
pp. 384-385
Author(s):  
E.S. Dmitrienko

AbstractCyclic variations of the parameter O-C (the difference between observed and calculated times of the light minimum in eclipse) have been detected for Nova 1934 DQ Her in the U BV RI-bands during 1982-89 with a recurrence time of about 5-6 years and amplitudes of about 2-4 min. No O-C oscillations for the nova-like AC Cnc have been discovered with the resolution of 45 sec in 1985-89. Both systems consist of a white dwarf and a late-type dwarf component. Some possibilities to explain their O-C-behaviour are discussed.


1979 ◽  
Vol 53 ◽  
pp. 497-497
Author(s):  
N. Vogt

Preliminary results of spectroscopic and photometric data for five dwarf novae are presented : 1) V 436 Cen. The orbital period of 0.0669 days was determined from radial velocity variations. The RV half amplitude of the primary, K1. = 159 km/s, implies very small masses of M1 ≲ 0.20 M⊙ and M2 = 0.18 M⊙ for the binary components.2) Z Cha. Broad emission (Hβ, Hγ, Hδ) and superimposed narrow absorption lines of Hβ-HII, HeI 4471, Cal 4427 and Call K characterize the spectrum during quiescence. Apparently, the cool, optically thin outer disc is seen on the background of a hot continuum, originating from the white dwarf or the inner disc. The RV half amplitude K1 = 87 km/s results in masses of M1 = 1.10 M⊙ and M⊙ = 0.21 M⊙.3) EX Hya. The RV half amplitude K1 = 68 km/s reveals masses of M1 = 1.4 M⊙ and M2 = 0.19 M⊙ The equivalent widths of the emission lines of H, HeI 4471 and HeII 4686 vary with the phase of the recently detected 67 minute cycle (maximal EW coincides nearly with maximal continuum intensity).4) 0Y Car is an eclipsing binary with an orbital period of 0.0631 days. The eclipses show strong variations in shape and amplitude in the course of an outburst, similar as those of Z Cha. The observations seem to confirm that the location of the eruption is the central part of the disc which increases in size and luminosity.5) EK TrA shows periodic superhumps (P = 0.0645 days) during supermaximum, and therefore belongs to the SU UMa sub-group of dwarf novae which are also characterized by a quasi-periodic occurence of super-maxima. The SU UMa sub-group comprises 70% of the ultra-short period cataclysmic binaries, and at least 18% of all dwarf novae.


2004 ◽  
Vol 194 ◽  
pp. 228-228
Author(s):  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch ◽  
K. Werner

We have developed a new code for the calculation of synthetic spectra and vertical structures of accretion disks in cataclysmic variables and compact X-ray binaries. Here we present results for the CV system AM CVn.AM CVn stars are a special type of cataclysmic variables, also called helium cataclysmics. They are systems of interacting binary white dwarfs, consisting of a degenerate C-O white dwarf primary and a low mass semi-degenerate secondary. The secondary loses mass, almost, pure helium, to the primary, forming an accretion disk. They have all in common a helium-rich composition, analoguous to the hydrogen-rich cataclysmic variables. They show photometric variabilities on time scales of ~ 1000s, the prototype of the class, AM CVn, e.g. exhibits a variability of ~ 18 min (Nelemans et al. 2001).


1996 ◽  
Vol 152 ◽  
pp. 301-308
Author(s):  
Knox S. Long

In the standard theory of dwarf novae in outburst, the boundary layer region between the inner edge of the accretion disk and the white dwarf surface radiates primarily in the extreme ultraviolet. Using EUVE, observers have been able to obtain spectra with sufficient spectral resolution to characterize accurately the emission from several dwarf novae in outburst, including U Geminorum and SS Cygni. I present an overview of the observations and early analyses of the dwarf nova observations. The spectra obtained of dwarf novae are complex compared to the EUV spectra of magnetic cataclysmic variables and single white dwarfs. Detailed spectral modeling of an expanding atmosphere will most like be required to fully understand the spectra. Nevertheless, we already know there were significant differences in the effective temperatures and other properties of the EUV emissions. If we assume the EUV emission arises primarily from the boundary layer and parameterize the EUV spectrum in terms of a blackbody, then for U Gem the derived boundary luminosity is comparable to the disk luminosity, consistent with the standard theory, and the minimum size of the emitting region is about that of the white dwarf surface. The count rates from U Gem were modulated strongly with the orbital period; differences in the shape of the spectrum in eclipse and out of eclipse suggest that while the bulk of the emission arose from the vicinity of the white dwarf, there was an extended source of emission as well. For SS Cyg, however, the derived boundary layer luminosity was a small fraction of the disk luminosity. In U Gem, the effective temperature dropped during the decline from outburst. In contrast, in SS Cyg, the effective temperature remained constant as the count rate rose by a factor of 100 and the effective size increased. Thus while the observations of U Gem seem broadly consistent with the standard theory for the boundary layer emission from dwarf novae, SS Cyg appears to present fundamental challenges to that theory.


2018 ◽  
Vol 609 ◽  
pp. A77 ◽  
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
M. Flock

The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf. We verify that these X-rays cannot self-sustain MRI-driven turbulence by photo-ionizing the disk and discuss possible solutions to the issue of accretion in quiescence.


Sign in / Sign up

Export Citation Format

Share Document