scholarly journals Accretion Disk Instabilities

1986 ◽  
Vol 89 ◽  
pp. 249-267
Author(s):  
F. Meyer

In this article we discuss two instabilities of stationary accretion disks which lead to an understanding of observed light variations in accretion disk systems, the dwarf novae and the rapid burster MXB 17030-335. The accretion disks in these systems avoid instability at the cost of stationarity and perform stable cycles in which sudden changes of the accretion flow lead to corresponding, often dramatic, variations of their accretion luminosity.Figure 1 shows a light curve of U Geminorum. It was discovered In 1855 by J.R. Hind and has become a prototype of the dwarf novae. In these systems an extended time of quiescence of up to several weeks Is followed by a short outburst of a few days during which the luminosity rises by a factor of 30 to 100. The dwarf novae belong to the cataclysmic variables. They are all close binaries In which a white dwarf primary is orbited by a Roche lobe-filling low mass secondary. Through the inner Lagrangian point mass flows over from the secondary and forms a luminious accretion disk around the white dwarf. In the case of the dwarf novae this disk has temperatures below about 10000K in Its outer region. It will be discussed how partial lonizatlon and convection then affect the vertical structure of the disk such that the stationary flow becomes unstable.Fig. 1. Light curve of the dwarf nova U Geminorum. Abszissa in days С [2])

2004 ◽  
Vol 194 ◽  
pp. 228-228
Author(s):  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch ◽  
K. Werner

We have developed a new code for the calculation of synthetic spectra and vertical structures of accretion disks in cataclysmic variables and compact X-ray binaries. Here we present results for the CV system AM CVn.AM CVn stars are a special type of cataclysmic variables, also called helium cataclysmics. They are systems of interacting binary white dwarfs, consisting of a degenerate C-O white dwarf primary and a low mass semi-degenerate secondary. The secondary loses mass, almost, pure helium, to the primary, forming an accretion disk. They have all in common a helium-rich composition, analoguous to the hydrogen-rich cataclysmic variables. They show photometric variabilities on time scales of ~ 1000s, the prototype of the class, AM CVn, e.g. exhibits a variability of ~ 18 min (Nelemans et al. 2001).


1995 ◽  
Vol 151 ◽  
pp. 282-284
Author(s):  
C. la Dous

Dwarf novae and nova-like stars are a sub-group of the class of cataclysmic variables. Most of these stars show high and low brightness states (maxima or outbursts and minima or quiescent states, respectively). They all are short-period interacting binaries consisting of a white dwarf primary, a late-type Roche-lobe filling secondary, and an accretion disk around the white dwarf. For details on observations of cataclysmic variables and their theoretical explanations and modelling, the interested reader is referred to recent reviews.The main problem when trying to understand these systems is the wealth of patterns presented by the whole group: no two objects are nearly identical and it is hard to say which the ‘typical’ features are. As a result of this, from an individual observation, or from observations of a few systems only, it is not possible to decide which of the observed features are characteristic of the entire class, and which are specific of individual members. The only way is to investigate many different members of the same class, arrange them according to their different physical parameters, and try to determine what the general characteristics are.


2015 ◽  
Vol 2 (1) ◽  
pp. 41-45
Author(s):  
S. Zharikov ◽  
G. Tovmassian

We discussed features of Cataclysmic Variables at the period minimum. In general, most of them must be WZ Sge-type objects. Main characteristics of the prototype star (WZ Sge) are discussed. A part of WZ Sge-type objects has evolved past the period limit and formed the bounce back systems. We also explore conditions and structure of accretion disks in such systems. We show that the accretion disk in a system with extreme mass ratio grows in size reaching a 2:1 resonance radius and are relatively cool. They also become largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence.


1988 ◽  
Vol 108 ◽  
pp. 238-239
Author(s):  
Yoji Osaki ◽  
Masahito Hirose

SU UMa stars are one of subclasses of dwarf novae. Dwarf novae are semi-detached close binary systems in which a Roche-lobe filling red dwarf secondary loses matter and the white dwarf primary accretes it through the accretion disk. The main characteristics of SU UMa subclass is that they show two kinds of outbursts: normal outbursts and superoutbursts. In addition to the more frequent narrow outbursts of normal dwarf nova, SU UMa stars exhibit “superoutbursts”, in which stars reach about 1 magnitude brighter and stay longer than in normal outburst. Careful photometric studies during superoutburst have almost always revealed the “superhumps”: periodic humps in light curves with a period very close to the orbital period of the system. However, the most curious of all is that this superhump period is not exactly equal to the orbital period, but it is always longer by a few percent than the orbital period.


1990 ◽  
Vol 115 ◽  
pp. 187-196
Author(s):  
T. R. Kallman

AbstractAccretion disk coronae are likely to be the dominant site for X-ray absorption and reprocessed emission in low mass X-ray binaries, and may be present in other classes of compact X-ray sources such as active galactic nuclei and cataclysmic variables. In spite of this fact, and in spite of the observational evidence for their existence, there remain many uncertainties about the structure of accretion disk coronae. This paper will discuss the coronal structure and dynamics, their X-ray spectral signatures including coupling to the variability behavior of compact X-ray sources, and the major unsolved theoretical issues surrounding them.


2004 ◽  
Vol 194 ◽  
pp. 128-129
Author(s):  
Włodek Kluźniak

AbstractNon-linear oscillations in the accretion disk are favored as an explanation of high-frequency QPOs observed in the light curves of low-mass X-ray binaries containing neutron stars, black holes, or white dwarfs.


2004 ◽  
Vol 193 ◽  
pp. 382-386 ◽  
Author(s):  
Brian Warner ◽  
Patrick A. Woudt

AbstractThere are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of the Sloan Digital Sky Survey more than 30 should be known.


2004 ◽  
Vol 194 ◽  
pp. 75-76
Author(s):  
N. A. Webb ◽  
B. Gendre ◽  
D. Barret

AbstractGlobular clusters (GCs) harbour a large number of close binaries which are hard to identify optically due to high stellar densities. Observing these GCs in X-rays, in which the compact binaries are bright, diminishes the over-crowding problem. Using the new generation of X-ray observatories, it is possible to identify populations of neutron star low mass X-ray binaries, cataclysmic variables and millisecond pulsars as well as other types of binaries. We present the spectra of a variety of binaries that we have identified in four GCs observed by XMM-Newton. We show that through population studies we can begin to understand the formation of individual classes of binaries in GCs and hence start to unfold the complex evolutionary paths of these systems.


Sign in / Sign up

Export Citation Format

Share Document