scholarly journals An Update on Radio Supernovae

1998 ◽  
Vol 164 ◽  
pp. 357-358 ◽  
Author(s):  
Schuyler D. Van Dyk ◽  
Richard A. Sramek ◽  
Kurt W. Weiler ◽  
Marcos J. Montes ◽  
Nino Panagia

AbstractThe radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a “turn-on” delay at longer wavelengths, power-law decline after maximum with index β, and spectral index α asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) “mini-shell” model, with modifications by Weiler et al. (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

1978 ◽  
Vol 3 (3) ◽  
pp. 231-233 ◽  
Author(s):  
D. B. Melrose ◽  
S. M. White

Stewart (1978) has reported four moving type IV bursts observed with the Culgoora radio heliograph at 43, 80 and 160 MHz. After an early phase, the brightness temperatures of the observed bursts decreased with increasing frequency and with time. The highest brightness temperature observed at 43 MHz was 1010K, and it seems that the brightness temperature would have been still higher at even lower frequencies. Existing theoretical ideas on moving type IV bursts are based on data (at 80 MHz primarily) which included no brightness temperatures in excess of 109K. the accepted interpretation involved gyro-synchrotron radiation from mildly relativistic electrons (energies ≈ 100 keV); reabsorption by the electrons themselves restricts the brightness temperature to less than about 100 keV ≈ 109K (Wild and Smerd 1972, Dulk 1973). Stewart’s (1978) new data at 43 MHz require that this accepted interpretation be modified; he has suggested that higher energy electrons are involved. An alternative suggestion is explored here, namely that the absorption might be negative. In other words, the high brightness temperatures observed could be due to a gyro-synchrotron maser involving electrons with energies of about 100 keV.


1974 ◽  
Vol 3 ◽  
pp. 493-498

Professor G. R. A. Ellis reviewed the wide range of radio emission from Jupiter. At centimetric wavelengths the thermal radiation corresponds to a blackbody at 130K. Between 2 m and 10 cm wavelength there is a powerful component of synchrotron radiation from the electrons trapped in the radiation belts. At longer wavelengths there is a great variety of impulsive radio emission from coherent plasma oscillations.The magnetic field of Jupiter is known from the polarisation of the synchrotron radiation to be situated centrally (within one tenth of the radius) and inclined at 10° to the rotation axis. The radiating electrons have energies of the order of 10 MeV, and a density of 10”-3 cm-3, much greater than in the case of the Earth’s radiation belts.The decametric radiation varies with the rotation of Jupiter, possibly analogously to pulsar radiation. Bursts at around 4 MHz reach very high brightness temperatures, exceeding 1017 K. The occurrence of these strong bursts is closely related to the position of the Jovian satellite Io, which must have an interaction with the main magnetic field.


1993 ◽  
Vol 10 (3) ◽  
pp. 254-257 ◽  
Author(s):  
D.B. Melrose

AbstractThe bright radio emission from flare stars has three characteristic properties: high brightness temperature, high degree of circular polarisation and rapid temporal variations. Two proposed emission mechanisms, electron cyclotron maser emission (ECME) and plasma emission, are compared and contrasted. It is argued that although the important features of the emission can be explained in terms of either ECME or plasma emission, all three favor ECME. However, the escapes of the radiation through the second harmonic absorption layer remains inadequately understood, and as a consequence doubts about the ECME interpretation remain.


2021 ◽  
Vol 257 (2) ◽  
pp. 49
Author(s):  
Laura Chomiuk ◽  
Justin D. Linford ◽  
Elias Aydi ◽  
Keith W. Bannister ◽  
Miriam I. Krauss ◽  
...  

Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T B > 5 × 104 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.


2021 ◽  
Vol 502 (4) ◽  
pp. 5438-5454
Author(s):  
Joshua Pritchard ◽  
Tara Murphy ◽  
Andrew Zic ◽  
Christene Lynch ◽  
George Heald ◽  
...  

ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys.


Nature ◽  
1963 ◽  
Vol 200 (4901) ◽  
pp. 56-57 ◽  
Author(s):  
P. J. S. WILLIAMS

2016 ◽  
Vol 12 (S324) ◽  
pp. 123-126
Author(s):  
Richard Saxton ◽  
S. Komossa ◽  
Andrew Read ◽  
Paulina Lira ◽  
Kate D. Alexander ◽  
...  

AbstractXMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t−5/3 but vary greatly in the early phase.


1972 ◽  
Vol 2 (3) ◽  
pp. 142-144 ◽  
Author(s):  
L. J. Gleeson ◽  
K. C. Westfold

In this paper we give an account of the corrections that must be made to the formula for the emissivity ηf due to a power-law energy distribution of ultrarelativistic charged particles in a uniform magnetic field B0 in directions well away from the field lines when the effects of upper and lower cut-off values E2 and E1 in the energy distribution are not negligible.


2017 ◽  
Vol 13 (S335) ◽  
pp. 11-13
Author(s):  
Mahender Aroori ◽  
G. Yellaiah ◽  
K. Chenna Reddy

AbstractRadio observations play a very important role in understanding the structure of the solar atmosphere. In this paper the quiet sun component of the solar radio emission has been investigated using data obtained from the Solar Indices Bulletin, National Geophysical Data Centre. By statistical method, the quiet sun component is estimated for 84 successive basic periods containing three solar rotations each using data obtained at different frequencies. From the quiet sun component we estimate the brightness temperature in each observing frequency.


Sign in / Sign up

Export Citation Format

Share Document