scholarly journals Early Shaping of Asymmetric Planetary Nebulae

1989 ◽  
Vol 106 ◽  
pp. 232-232
Author(s):  
Noam Soker

We suggest that the shape of a young asymmetric planetary nebulae may be influenced by a close binary star located at its center. This binary is a relic of the common envelope phase, presumably through which the asymmetric planetary nebula evolved. We assume that for a short period of time, shortly after the cession of the slow wind and long before the fast wind becomes effective, the binary ejects a small amount of mass, mainly in the equatorial plane. In this work we do not discuss the exact mechanism for the ejection of this pulse of mass. In the case in which the cooling is very efficient, (i.e., high-Mach-number isothermal flow), we can solve the problem analytically by using a few simplifying assumptions. In this case the high density region is shaped like a ring. We use two-dimensional hydrodynamics for the more general case. We find that at late times the high density region has a “horseshoe” shape, as viewed in the symmetry plane. There is an instability in the maximum density region. Finally we compare our results with the shape of the planetary nebula M2-9.

2019 ◽  
Vol 624 ◽  
pp. A83 ◽  
Author(s):  
Zs. Kővári ◽  
K. G. Strassmeier ◽  
K. Oláh ◽  
L. Kriskovics ◽  
K. Vida ◽  
...  

Context. On the asymptotic giant branch, low to intermediate mass stars blow away their outer envelopes, forming planetary nebulae. Dynamic interaction between the planetary nebula and its central progenitor is poorly understood. The interaction is even more complex when the central object is a binary star with a magnetically active component, as is the case for the target in this paper. Aims. We aim to quantify the stellar surface activity of the cool binary component of IN Com and aim to explain its origin. In general, we need a better understanding of how central binary stars in planetary nebulae evolve and how this evolution could develop such magnetically active stars as IN Com. Methods. We present a time series of 13 consecutive Doppler images covering six months in 2017 that we used to measure the surface differential rotation with a cross-correlation method. Hitherto unpublished high-precision photometric data from 1989 to 2017 are presented. We applied Fourier-transformation-based frequency analysis to both photometry and spectra. Very high resolution (R ≈ 200 000) spectra were used to update IN Com’s astrophysical parameters by means of spectral synthesis. Results. Our time-series Doppler images show cool and warm spots coexisting with an average surface temperature contrast of −1000 K and +300 K with respect to the effective temperature. Approximately 8% of the stellar surface is covered with cool spots and ∼3% with warm spots. A consistent cool polar spot is seen in all images. The average lifetime of the cool spots is not much more than a few stellar rotations (one month), while the warm spots appear to live longer (three months) and are mostly confined to high latitudes. We found anti-solar surface differential rotation with a shear coefficient of α = −0.026 ± 0.005 suggesting an equatorial rotation period of 5.973 ± 0.008 d. We reconfirm the 5.9 day rotation period of the cool star from photometry, radial velocities, and Hα line-profile variations. A long-term V-brightness variation with a likely period of 7.2 yr is also found. It appears in phase with the orbital radial velocity of the binary system in the sense that it is brightest at highest velocity and faintest at lowest velocity, that is, at the two phases of quadrature. We redetermine [Ba/Fe], [Y/Fe], and [Sr/Fe] ratios and confirm the overabundance of these s-process elements in the atmosphere of IN Com.


1989 ◽  
Vol 131 ◽  
pp. 411-424 ◽  
Author(s):  
F. D. Kahn

According to the multiple winds model a planetary nebula forms as the result of the interaction of a fast wind from the central star with the superwind that had previously been emitted by the progenitor star. The basic theory which deals with the spherically symmetrical case is briefly summarised. Various improvements are then considered in turn. A better history is clearly needed of the way that the central star becomes hotter, it is unrealistic to make the assumption that the superwind is spherically symmetrical, and finally there are likely to be important instabilities at some of the interfaces in the PN, notably that between the shocked superwind and the HII layer. These changes in the theoretical description produce a better understanding of the conditions in the outer parts of a PN and of the nature of its general shape, and they should lead to an explanation for the occurrence of high speed motions, and of highly ionized species and high excitation spectral lines.


Author(s):  
Jason Nordhaus ◽  
David S. Spiegel

AbstractThe diversity of collimated outflows in post-asymptotic-giant-branch stars and their planetary nebula progeny are often explained by a combination of close binary interactions and accretion. The viability of such scenarios can be tested by comparing kinematic outflow data to determine minimum accretion rates necessary to power observed outflows. While many binary channels have been ruled out with this technique, common envelope interactions can accommodate the current observational constraints, are potentially common, lead to a diverse array of planetary-nebula shapes, and naturally produce period gaps for companions to white dwarfs.


1997 ◽  
Vol 180 ◽  
pp. 184-189
Author(s):  
A. Manchado

The study of the morphology of planetary nebula (PN) is fundamental for addressing several questions in the context of stellar evolution. An AGB star can loose most of its mass due to strong stellar winds. Kwok et al. (1978) proposed that the interaction of a low-density fast wind with a high-density slow wind, will form the PN. This model can account for the round observed PNe with a great degree of symmetry. However as we will see later, round PNe are not the most common ones. Therefore a mechanism for causing asymmetry has to be invoked. Several processes have been proposed by different authors.


2017 ◽  
Vol 12 ◽  
pp. 193-199 ◽  
Author(s):  
F. Reimold ◽  
M. Wischmeier ◽  
S. Potzel ◽  
L. Guimarais ◽  
D. Reiter ◽  
...  

2015 ◽  
Vol 11 (A29B) ◽  
pp. 33-36
Author(s):  
Jason Nordhaus ◽  
David S. Spiegel

AbstractThe diversity of collimated outflows in post-asymptotic-giant-branch stars and their planetary nebula progeny are often explained by a combination of close binary interactions and accretion. The viability of such scenarios can be tested by comparing kinematic outflow data to determine minimum accretion rates necessary to power observed outflows. While many binary channels have been ruled out with this technique, common envelope interactions can accommodate the current observational constraints, are potentially common, lead to a diverse array of planetary-nebula shapes, and naturally produce period gaps for companions to white dwarfs.


Sign in / Sign up

Export Citation Format

Share Document