scholarly journals Surface magnetic activity of the fast-rotating G5 giant IN Comae, central star of the faint planetary nebula LoTr 5

2019 ◽  
Vol 624 ◽  
pp. A83 ◽  
Author(s):  
Zs. Kővári ◽  
K. G. Strassmeier ◽  
K. Oláh ◽  
L. Kriskovics ◽  
K. Vida ◽  
...  

Context. On the asymptotic giant branch, low to intermediate mass stars blow away their outer envelopes, forming planetary nebulae. Dynamic interaction between the planetary nebula and its central progenitor is poorly understood. The interaction is even more complex when the central object is a binary star with a magnetically active component, as is the case for the target in this paper. Aims. We aim to quantify the stellar surface activity of the cool binary component of IN Com and aim to explain its origin. In general, we need a better understanding of how central binary stars in planetary nebulae evolve and how this evolution could develop such magnetically active stars as IN Com. Methods. We present a time series of 13 consecutive Doppler images covering six months in 2017 that we used to measure the surface differential rotation with a cross-correlation method. Hitherto unpublished high-precision photometric data from 1989 to 2017 are presented. We applied Fourier-transformation-based frequency analysis to both photometry and spectra. Very high resolution (R ≈ 200 000) spectra were used to update IN Com’s astrophysical parameters by means of spectral synthesis. Results. Our time-series Doppler images show cool and warm spots coexisting with an average surface temperature contrast of −1000 K and +300 K with respect to the effective temperature. Approximately 8% of the stellar surface is covered with cool spots and ∼3% with warm spots. A consistent cool polar spot is seen in all images. The average lifetime of the cool spots is not much more than a few stellar rotations (one month), while the warm spots appear to live longer (three months) and are mostly confined to high latitudes. We found anti-solar surface differential rotation with a shear coefficient of α = −0.026 ± 0.005 suggesting an equatorial rotation period of 5.973 ± 0.008 d. We reconfirm the 5.9 day rotation period of the cool star from photometry, radial velocities, and Hα line-profile variations. A long-term V-brightness variation with a likely period of 7.2 yr is also found. It appears in phase with the orbital radial velocity of the binary system in the sense that it is brightest at highest velocity and faintest at lowest velocity, that is, at the two phases of quadrature. We redetermine [Ba/Fe], [Y/Fe], and [Sr/Fe] ratios and confirm the overabundance of these s-process elements in the atmosphere of IN Com.

1989 ◽  
Vol 106 ◽  
pp. 232-232
Author(s):  
Noam Soker

We suggest that the shape of a young asymmetric planetary nebulae may be influenced by a close binary star located at its center. This binary is a relic of the common envelope phase, presumably through which the asymmetric planetary nebula evolved. We assume that for a short period of time, shortly after the cession of the slow wind and long before the fast wind becomes effective, the binary ejects a small amount of mass, mainly in the equatorial plane. In this work we do not discuss the exact mechanism for the ejection of this pulse of mass. In the case in which the cooling is very efficient, (i.e., high-Mach-number isothermal flow), we can solve the problem analytically by using a few simplifying assumptions. In this case the high density region is shaped like a ring. We use two-dimensional hydrodynamics for the more general case. We find that at late times the high density region has a “horseshoe” shape, as viewed in the symmetry plane. There is an instability in the maximum density region. Finally we compare our results with the shape of the planetary nebula M2-9.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Isabel Aleman ◽  
Jeronimo Bernard-Salas ◽  
Joel H. Kastner ◽  
Toshiya Ueta ◽  
Eva Villaver

This workshop is the second of the WORKPLANS series, which we started in 2016. The main goal of WORKPLANS is to build up a network of planetary nebulae (PNe) experts to address the main open questions in the field of PNe research. The specific aims of the WORKPLANS workshop series are (i) to discuss and prioritize the most important topics to be investigated by the PN community in the following years; (ii) to establish a network of excellent researchers with complementary expertise; (iii) to formulate ambitious observing proposals for the most advanced telescopes and instrumentation presently available (ALMA, SOFIA, VLT, GTC, HST, etc.), addressing those topics; and (iv) to develop strategies for major proposals to future observatories (JWST, ELT, SPICA, Athena, etc.). To achieve these goals, WORKPLANS II brought together experts in all key sub-areas of the PNe research field, namely: analysis and interpretation of PNe observational data; theoretical modeling of gas and dust emission; evolution from Asymptotic Giant Branch stars (PNe progenitors) to PNe; and the instrumentation and technical characteristics of the relevant observatories.


1993 ◽  
Vol 155 ◽  
pp. 291-298 ◽  
Author(s):  
P.R. Wood ◽  
E. Vassiliadis

Thermal pulses in AGB stars cause large luminosity variations at the stellar surface. The role of these luminosity variations in the production of planetary nebulae is discussed. Results of theoretical evolution calculations which include mass loss modulated by thermal pulses are presented.


Author(s):  
Jason Nordhaus ◽  
David S. Spiegel

AbstractThe diversity of collimated outflows in post-asymptotic-giant-branch stars and their planetary nebula progeny are often explained by a combination of close binary interactions and accretion. The viability of such scenarios can be tested by comparing kinematic outflow data to determine minimum accretion rates necessary to power observed outflows. While many binary channels have been ruled out with this technique, common envelope interactions can accommodate the current observational constraints, are potentially common, lead to a diverse array of planetary-nebula shapes, and naturally produce period gaps for companions to white dwarfs.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


1995 ◽  
Vol 12 (2) ◽  
pp. 170-173
Author(s):  
Grant Gussie

AbstractA novel explanation for the origin of the cometary globules within NGC 7293 (the ‘Helix’ planetary nebula) is examined, namely that these globules originate as massive cometary bodies at large astrocentric radii. The masses of such hypothetical cometary bodies would have to be several orders of magnitude larger than those of any such bodies observed in our solar system in order to supply the observed mass of neutral gas. It is, however, shown that comets at ‘outer Oort cloud’ distances are likely to survive past the red giant and asymptotic giant branch evolutionary phases of the central star, allowing them to survive until the formation of the planetary nebula. Some observational tests of this hypothesis are proposed.


2003 ◽  
Vol 209 ◽  
pp. 439-446 ◽  
Author(s):  
Matthias Steffen ◽  
Detlef Schönberner

The density structure of the extended haloes of Planetary Nebulae (PN) is generally believed to reflect the previous history of heavy mass loss during the final stages of stellar evolution on the asymptotic giant-branch (AGB). In this review, we discuss different interpretations of the observed PN halo structures in the light of recent numerical simulations combining detailed AGB and post-AGB stellar evolution calculations with time-dependent hydrodynamical wind models.


2019 ◽  
Vol 625 ◽  
pp. A137 ◽  
Author(s):  
D. Schönberner ◽  
M. Steffen

Context. Individual distances to planetary nebulae are of the utmost relevance for our understanding of post-asymptotic giant-branch evolution because they allow a precise determination of stellar and nebular properties. Also, objects with individual distances serve as calibrators for the so-called statistical distances based on secondary nebular properties. Aims. With independently known distances, it is possible to check empirically our understanding of the formation and evolution of planetary nebulae as suggested by existing hydrodynamical simulations. Methods. We compared the expansion parallaxes that have recently been determined for a number of planetary nebulae with the trigonometric parallaxes provided by the Gaia Data Release 2. Results. Except for two out of 11 nebulae, we found good agreement between the expansion and the Gaia trigonometric parallaxes without any systematic trend with distance. Therefore, the Gaia measurements also prove that the correction factors necessary to convert proper motions of shocks into Doppler velocities cannot be ignored. Rather, the size of these correction factors and their evolution with time as predicted by 1D hydrodynamical models of planetary nebulae is basically validated. These correction factors are generally greater than unity and are different for the outer shell and the inner bright rim of a planetary nebula. The Gaia measurements also confirm earlier findings that spectroscopic methods often lead to an overestimation of the distance. They also show that even modelling of the entire system of star and nebula by means of sophisticated photoionisation modelling may not always provide reliable results. Conclusions. The Gaia measurements confirm the basic correctness of the present radiation-hydrodynamics models, which predict that both the shell and the rim of a planetary nebula are two independently expanding entities, created and driven by different physical processes, namely thermal pressure (shell) or wind interaction (rim), both of which vary differently with time.


2016 ◽  
Vol 12 (S328) ◽  
pp. 69-76
Author(s):  
Adriana Valio

AbstractMagnetic activity of stars manifests itself in the form of dark spots on the stellar surface. This in turn will cause variations of a few percent in the star light curve as it rotates. When an orbiting planet eclipses its host a star, it may cross in front of one of these spots. In this case, a “bump” will be detected in the transit lightcurve. By fitting these spot signatures with a model, it is possible to determine the spots physical properties such as size, temperature, location, magnetic field, and lifetime. Moreover, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. For long time series of transits during multiple years, magnetic cycles can also be determined. This model has been applied successfully to CoRoT-2, CoRoT-4, CoRot-5, CoRoT-6, CoRoT-8, CoRoT-18, Kepler-17, and Kepler-63.


1989 ◽  
Vol 131 ◽  
pp. 356-356
Author(s):  
Stephen J. Meatheringham ◽  
Michael A. Dopita ◽  
Peter R. Wood ◽  
B. Louise Webster ◽  
David H. Morgan ◽  
...  

New evolutionary correlations have been discovered to apply to the population of Planetary Nebulae (FN) in the Magellanic Clouds. Firstly, the age of the nebular shell is found to follow a relationship τ = 890[(Mneb/M⊙) (Vexp/km s−1)]0,6 yr, which is shown to be consistent with a model in which the total energy of the ionised and swept up gas drives the expansion down the density gradient in the precursor AGE wind. Secondly, a tight correlation is found between the expansion velocity and a combination of the Excitation Class and the Hβ flux. This appears to be determined by the mass of the planetary nebula nuclear star. These correlations provide strong observational support for the idea that the PN shells are ejected at low velocity during the Asymptotic Giant Branch phase of evolution, and that they are continually accelerated during their nebular lifetimes.


Sign in / Sign up

Export Citation Format

Share Document