scholarly journals Molecular Radio Line Observations of Mass Loss From Red Giants

1989 ◽  
Vol 106 ◽  
pp. 321-338
Author(s):  
H. Olofsson

AbstractThe number of molecules detected at radio wavelengths in envelopes around red giants stands presently at 36. Among these OH and CO have proven to be the most useful for the study of the physical characteristics of a circumstellar envelope. The mass loss rate of the central star can be relatively accurately estimated and it appears possible to trace its evolution with time. Also fascinating objects in transition from the red giant phase to the planetary nebula phase are becoming observationally accessible.

1981 ◽  
Vol 59 ◽  
pp. 345-346
Author(s):  
A. Harpaz ◽  
A. Kovetz

The evolution of a 1.2Mʘ star along the asymptotic branch with continuous mass loss is presented, showing that this mass loss leads to the formation of a PN with a typical central star in its center.A former investigation (Harpaz and Kovetz, 1980) has shown that mechanisms for PN creation based on sudden violent processes are not likely to work in the envelope of a red giant star. On the other hand, significant mass loss from red giants was observed as a general phenomenon.We have followed the evolution of a 1.2Mʘ star along the asymptotic branch, including in the evolutionary calculations a mass loss according to Reimers’ empirical formula. It was found that towards the end of this stage, the mass loss rate was about 2.7xl0-6Mʘ/y, which is consistent with the formation of a typical PN within 30,000 years. When the mass content of the hydrogen rich envelope dropped to 1.5x10-3Mʘ, the star began to contract rapidly, forming a typical central star of 0.6Mʘ


1981 ◽  
Vol 59 ◽  
pp. 319-338
Author(s):  
Alvio Renzini

AbstractThe effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 Mʘ) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed.


2018 ◽  
Vol 609 ◽  
pp. A63 ◽  
Author(s):  
M. Van de Sande ◽  
L. Decin ◽  
R. Lombaert ◽  
T. Khouri ◽  
A. de Koter ◽  
...  

Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims. Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods. We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline starts at the stellar surface and has an e-folding radius re of 1.85 ± 0.05 × 1015 cm or 74 ± 2 R∗. Conclusions. We cannot unambiguously identify the mechanism by which SiO is destroyed at 60 ± 10 R∗. The initial abundances found are higher than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-J transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.


1981 ◽  
Vol 59 ◽  
pp. 45-50
Author(s):  
Mario Perinotto ◽  
Piero Benvenuti ◽  
Carla Cacciari

AbstractFrom a high resolution spectrum taken with IUE, the central star of the planetary nebula IC 2149 is found to exibit a wind with edge velocity of 1440 ± 100 km s-1. Our preliminary evaluation of the associated mass loss rate gives 10-8 M0 yr-1. Other planetary nebulae nuclei are studied with low resolution IUE spectra and indications are found of mass loss rates consistent with the above value.


1989 ◽  
Vol 106 ◽  
pp. 226-226
Author(s):  
P.J. Huggins ◽  
A.P. Healy

It is generally believed that red giant mass loss plays some role in the formation of planetary nebulae (PNe), but the connection is not clearly understood. To investigate this issue we have undertaken an extensive search for molecular gas in PNe, which is likely to be remnant material of the red giant wind not yet ionized by the central star. The search has been carried out with the NRAO 12 m telescope in the 1.3 mm line of 00 which is widely observable in the molecular winds of red giants.


1993 ◽  
Vol 155 ◽  
pp. 351-351
Author(s):  
Lifan Wang

Following Kahn & West (1985), we investigate the formation of PNe in the slow and fast wind interaction scheme by assuming the slow wind axially symmetric. We have further assumed that the mass loss rate for the slow wind is not steady. It is found that the final morphology of the nebula depends not only upon the initial degrees of the seed asymmetry in the slow wind, but also upon the time variations of the mass loss rate. As an example, we show in some detail the case where the central star first blows an axially symmetric slow wind during its red giant stage, this wind is followed by a superwind while the star is on the AGB, these slow wind is later overtaken and shaped by the fast wind during the post-AGB branch. It is found that a small initial asymmetry can be amplified and reproduces the various observed morphologies of the PNe.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89
Author(s):  
Efrat Sabach

We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0 . 001 and Z = 0 . 004 , and compare with the evolution with solar metallicity, Z = 0 . 02 . We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function.


1984 ◽  
Vol 108 ◽  
pp. 195-206
Author(s):  
Jeremy Mould

Recent observations in both the field and the clusters of the Magellanic Clouds suggest a higher mass loss rate during or at the end of the asymptotic giant branch phase than previously supposed. Recent theoretical investigations offer an explanation for the frequency of carbon stars in the Clouds, but a rich parameter space remains to be explored, before detailed agreement can be expected.


1993 ◽  
Vol 155 ◽  
pp. 483-483
Author(s):  
S.K. Górny

A grid of homogeneous models of evolution of hydrogen burning planetary nebulae nuclei, assuming different stellar winds and the zero points for the post-AGB evolution, have been constructed from original Schönberners tracks. Following a simplified line-driven wind theory the mass loss rate has been adopted to be


Sign in / Sign up

Export Citation Format

Share Document