significant mass loss
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 612
Author(s):  
Arkadiusz Dyjakon ◽  
Łukasz Sobol ◽  
Tomasz Noszczyk ◽  
Jakub Mitręga

A large portion of food loss and waste (FSL) is comprised of seeds and stones. Exotic fruits such as mangoes, lychees and avocados, in which the seeds account for a significant part of the weight and volume of the entire product, are most affected by this problem. The seeds contain a large quantity of polyphenols and essential nutrients, which makes them a good material for extraction. However, conventional extraction techniques are considered time-consuming, and therefore significantly limit their use on an industrial scale. An alternative method of managing the seeds may be their energy utilization. In this study, torrefaction was proposed as a method for the valorization of exotic fruit seeds (mango, lychee, avocado). Thus, the influence of torrefaction temperature (200–300 °C) on the physical-chemical properties of substrates was investigated. The obtained results revealed that, in relation to the unprocessed raw materials, the torreficates are characterized by improved hydrophobic properties (all materials are classified as extremely hydrophobic), higher heating value (at 300 °C the values increased from 17,789 to 24,842 kJ∙kg−1 for mango, from 18,582 to 26,513 kJ∙kg−1 for avocado, and from 18,584 to 25,241 kJ∙kg−1 for lychee), higher fixed carbon content (which changed from 7.87–15.38% to 20.74–32.47%), and significant mass loss, by 50–60%. However, as a side effect of thermal treatment, an increase in ash content (approx. 2–3 times but still less than in coal) was observed. Therefore, the torreficates may be competitive with coal. The possibility of using residues from the food processing sector as a substrate for energy purposes is important from the point of view of environment protection and is a part of the functioning of the circular economy.


2021 ◽  
Vol 15 (8) ◽  
pp. 4135-4143
Author(s):  
Daniela Festi ◽  
Margit Schwikowski ◽  
Valter Maggi ◽  
Klaus Oeggl ◽  
Theo Manuel Jenk

Abstract. Dating glaciers is an arduous yet essential task in ice core studies, which becomes even more challenging when the glacier is experiencing mass loss in the accumulation zone as result of climate warming, leading to an older ice surface of unknown age. In this context, we dated a 46 m deep ice core from the Central Italian Alps retrieved in 2016 from the Adamello glacier in the locality Pian di Neve (3100 m a.s.l.). Here we present a timescale for the core obtained by integrating results from the analyses of the radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results clearly indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years and that the 46 m ice core reaches back to around 1944. For the period of 1995–2016 the mass balance at the drilling site (former accumulation zone) decreased on average of about 1 m w.e. a−1 compared to the period 1963–1986. Despite the severe mass loss affecting this glacier even in the former accumulation zone, we show that it is possible to obtain a reliable timescale for such a temperate glacier using black carbon and pollen seasonality in combination with radionuclides 210Pb and 137Cs. Our results are therefore very encouraging and open new perspectives on the potential of such glaciers as informative palaeoarchives.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 570
Author(s):  
Tae-Jin Kim

As we observe an increase in muscle mass by lifting weights or a significant mass loss in musculoskeletal tissues of astronauts returning after a stay in space, we note the manifestation of the mechanism of mechanotransduction that is central to mechanobiology [...]


2021 ◽  
Author(s):  
Theo Jenk ◽  
Daniela Festi ◽  
Margit Schwikowski ◽  
Valter Maggi ◽  
Klaus Oeggl

<p>Dating glaciers is an arduous yet essential task in ice core studies, which becomes even more challenging for the dating of glaciers suffering from mass loss in the accumulation zone as result of climate warming. In this context, we present the dating of a 46 m deep ice core from the Central Italian Alps retrieved in 2016 from the Adamello glacier (Pian di Neve, 3100 m a.s.l.). We will show how the timescale for the core could be obtained by integrating results from the analyses of the radionuclides <sup>210</sup>Pb and <sup>137</sup>Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results clearly indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years and that the 46 m ice core reaches back to around 1944. Despite the severe mass loss affecting this glacier even in the accumulation zone, we show that it is possible to obtain a reliable timescale for such a temperate glacier. These results are very encouraging and open new perspectives on the potential of such glaciers as informative palaeoarchives. We thus consider it important to present our dating approach to a broader audience.</p>


Tekstilec ◽  
2021 ◽  
Vol 64 (1) ◽  
pp. 47-54
Author(s):  
Madan Lal Regar ◽  
◽  
Akhtarul Islam Amjad ◽  
Shubham Joshi ◽  
◽  
...  

Yarns and fabrics can be improved through structural modifications. Using an organic solvent is a novel and popular approach for a structural modification in the field of textiles. In the present work, Siro-spun® and TFO (Two for one Twisters) polyester yarns were modified with a solvent-acid mixture of aceton and trichloroacetic acid : methylene chloride (TCAMC). Both types of yarn samples were treated in a relaxed state with various concentrations of the solvent’s mixture at room temperature. The influence of the treatment with respect to linear density and TCAMC concentration on mechanical properties was investigated. Modified yarns exhibited higher breaking elongation, improved abrasion resistance and lower tenacity. It was also found that the methods of yarn manufacturing contribute significantly to the tensile behaviour of modified yarns. The improvement in elongation was higher in the treated TFO yarn. The abrasion resistance index was found to be lower in the case of siro polyester yarns. Furthermore, significant mass loss in yarn was observed after the treatment of TCAMC.


2020 ◽  
Author(s):  
Daniela Festi ◽  
Margit Schwikowski ◽  
Valter Maggi ◽  
Klaus Oeggl ◽  
Theo Manuel Jenk

Abstract. Dating glaciers is an arduous yet essential task in ice core studies, which becomes even more challenging when dating glaciers suffering from mass loss in the accumulation zone as result of climate warming. In this context, we dated a 46 m deep ice core from the Central Italian Alps retrieved in 2016 from the Adamello glacier in the locality Pian di Neve (3100 m a.s.l.). Here we present a timescale for the core obtained by integrating results from the analyses of the radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results clearly indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years and that the 46 m ice core reaches back to around 1944. Despite the severe mass loss affecting this glacier even in the accumulation zone, we show that it is possible to obtain a reliable timescale for such a temperate glacier. Our results are therefore very encouraging and open new perspectives on the potential of such glaciers as informative palaeoarchives.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4942
Author(s):  
Andrzej Biessikirski ◽  
Łukasz Kuterasiński ◽  
Michał Dworzak ◽  
Michał Twardosz ◽  
Maciej Tatko ◽  
...  

Ammonium nitrate fuel oil (ANFO) samples based on fertilizer (AN-F) and ammonium nitrate porous prill (AN-PP) were studied. Tests were carried out using both a thermogravimetric analyzer and differential scanning calorimetry (TGA/DSC). Furthermore, the scanning electron microscopy analysis (SEM) of ammonium nitrate(V) (AN) concerning either their surface or cross-section was performed. Based on the SEM results, it was shown that the surface of AN-F grains was flat and slightly deformed, while the AN-PP surface was wrinkled and deformed. Furthermore, the various steps of thermogravimetric process exhibited continuous AN phase transition according to precise temperatures. From TGA analysis, a significant mass loss was found as a result of ANFO decomposition. Direct comparison of SEM and TGA/DCS data led to the conclusion that ANFO based on AN-F was characterized by lower absorption of FO in contrast to AN-PP.


Author(s):  
Bemgba B. Nyakuma

This study presents preliminary findings on the physicochemical, calorific, and thermal properties of a newly discovered coal from Obomkpa town in Aniocha-North Local Government Area of Delta State in Nigeria. The Obomkpa (BMK) coal sample was subjected to fuel characterisation through ASTM standards and techniques for determining elemental, proximate, and calorific coal properties. The results indicated that BMK coal contains high carbon, oxygen, volatile matter, fixed carbon, and ash. The higher heating value of BMK was 19.66 MJ/kg, which indicates it could be ranked as either lignite A or subbituminous C coal. The thermal properties indicated that BMK experienced significant mass loss (ML) under oxidative (combustion) and non-oxidative (pyrolysis) conditions due to thermal degradation of organic rock macerals (inertinite and vitrinite). Furthermore, BMK experienced mass loss (ML=59.27%–76.56%) along with residual mass (RM = 23.44–40.73%) under oxidative (combustion) and non-oxidative (pyrolysis) conditions. Thermal degradation occurred in three (3) stages; drying (30 °C to 200 °C), devolatilization (200 °C – 500 °C and 600 °C), and lastly, coke degradation and ash formation. Furthermore, the DTG peaks for the drying and devolatilization of BMK during the oxidative (combustion) process occurred at lower temperatures compared to the non-oxidative (pyrolysis) process. Hence, the results submit oxidative (combustion) is a more thermally efficient process compared to the non-oxidative (pyrolysis) process. Lastly, the findings indicate BMK is a potential feedstock material for future coal power generation, steel, iron ore or cement production.


Sign in / Sign up

Export Citation Format

Share Document