scholarly journals The Present Status of the Munich Dust Counter Experiment on Board of the Hiten Spacecraft

1991 ◽  
Vol 126 ◽  
pp. 15-20 ◽  
Author(s):  
E. Igenbergs ◽  
A. Hüdepohl ◽  
K. Uesugi ◽  
T. Hayashi ◽  
H. Svedhem ◽  
...  

AbstractThe Munich Dust Counter (MDC) is a scientific experiment on board the MUSES-A mission of Japan measuring cosmic dust. The satellite HITEN of this mission has been launched on January 24th, 1990 from Kagoshima Space Center. Here the present status of the MDC experiment is summarized. The number of dust particles measured so far is presented together with first and preliminary results of flux calculations and spatial as well as directional distributions of cosmic dust particles measured until July 25, 1990. A clear evidence of particles coming from the inner solar system (beta-meteoroids) already has been found. These are compared to particles coming from the apex direction.

1996 ◽  
Vol 150 ◽  
pp. 415-418 ◽  
Author(s):  
J. C. Worms ◽  
A.C. Levasseur-Regourd ◽  
E. Hadamcik ◽  
D. Bourras

AbstractPolarimetric measurements of the light scattered by irregular dust particles are essential to interpret observations of solar system dust in terms of its physical properties. We developed a iight scattering unit to retrieve polarimetric phase curves of dust samples in microgravity conditions. Preliminary results suggest that the values for the maximum polarization are higher under 1 “ g ” than under 0 “ g ” This can be compared to ground-based measurements which exhibit higher values for packed dust than for sifted dust. The unit is operational and is used to help design a related orbital experiment.


1971 ◽  
Vol 13 ◽  
pp. 209-221 ◽  
Author(s):  
H. Fechtig

Reliable measurements of cosmic dust abundances have been obtained by ionization detectors during particle impact and by collectors controlled either by inflight shadowing or by penetration-hole identification. A description of the techniques used is given.Crater-number densities observed on the lunar surface and on lunar samples represent an important source of information on cosmic dust fluxes. The related results from the Apollo 11 and 12 missions are reviewed. The overall knowledge gained from these measurements leads to the following flux model: The cumulative flux Φ vs mass m follows the extrapolation from larger meteoroid-size range (Watson’s Law) and can be described byThe Pioneer 8 dust experiment and lunar samples indicate a depletion of the flux at approximately 10-8g. However, cosmic dust particles exist in interplanetary space at least down to 0.3 μ. diameter. They are interpreted as nonmetallic particles in the solar system.The atmosphere shows an enhancement in particles of about one order of magnitude compared to the flux in interplanetary space at 1 AU. No depletion or cutoff could be detected. These particles are interpreted as lunar debris or as disintegrated products from fireballs.The numbers of large lunar craters (>140 m diameter) in Mare Tranquillitatis and in Oceanus Procellarum are compared with the meteoroid flux. These comparisons lead to a time-variable flux of Φ.e-Bt, with B = 2.6 and t = time in 109 yr. Thus, the meteoroidflux at the formation of the lunar maria was approximately 4 orders of magnitude higher than today.


1976 ◽  
Vol 54 (3) ◽  
pp. 317-321 ◽  
Author(s):  
R. Wlochowicz ◽  
C. L. Hemenway ◽  
D. S. Hallgren ◽  
C. D. Tackett

A new technique for the collection of large cosmic dust particles from balloons is described. Two flights have been completed successfully. Preliminary results are given.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 253-256 ◽  
Author(s):  
Cécile Engrand ◽  
Jean Duprat ◽  
Noémie Bardin ◽  
Emmanuel Dartois ◽  
Hugues Leroux ◽  
...  

AbstractComets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.


1976 ◽  
Vol 31 ◽  
pp. 251-269
Author(s):  
Curtis L. Hemenway

AbstractA review is given which suggests that cosmic dust theoretical and experimental studies are still beset with uncertainty and inaccuracy. A significant body of interrelated evidence exists which indicates that the solar system has two populations of dust particles, a submicron population generated and emitted by the sun and a larger size population spiraling inward toward the sun. The submicron component may provide the missing coupling mechanism between solar sunspot activity and meteorological activity in the earth’s atmosphere.


1998 ◽  
Vol 11 (2) ◽  
pp. 1155-1156
Author(s):  
H.U. Keller

Comets, the most pristine members of our solar system, are faint at large heliocentric distances (rh > 3 au) and therefore difficult to observe. Data reduction of these faint objects (periodic comets) is time consuming and hence most often just preliminary results can be discussed. Only the orbits of short periodic comets can be predicted and most of those that have been accessible for ISO have been covered within the guaranteed time programme. About 10 proposals were accepted by the selection for open time proposals. A target of opportunity team was formed. The outstanding comet Hale-Bopp (C/1995 01), one of the brightest and therefore most active comets of this century, was suggested and accepted as TOO. The important results from the ISO cometary programme are derived from its observations. In addition to the observations of "classic" comets the newly detected (Jewitt and Luu, 1993) transneptunian objects, probably objects from the Kuiper belt, are observed in an attempt to determine their physical properties.


2021 ◽  
Author(s):  
Ralf Srama ◽  
Jon K. Hillier ◽  
Sean Hsu ◽  
Sascha Kempf ◽  
Masanori Kobayashi ◽  
...  

<p>The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn from 2004 to 2017. Besides the study of Saturn’s E ring and its interaction with the embedded moons, CDA detected nanoparticles in the outer Saturn system moving on unbound orbits and originating primarily from Saturn’s E-ring. Although the instrument was built to detect micron and sub-micron sized particles, nano-sized grains were detected during the flyby at early Jupiter and in the outer environment at Saturn. Fast dust particles with sizes below 10 nm were measured by in-situ impact ionization and mass spectra were recorded. What are the limits of in-situ hypervelocity impact detection and what can be expected with current high-resolution mass spectrometers as flown onboard the missions DESTINY+ or EUROPA? Is the sensitivity of Dust Telescopes sufficient to detect nano-diamonds in interstellar space? This presentation summarizes the current experience of in-situ dust detectors and gives a prediction for future missions. In summary, current Dust Telescopes with integrated high-resolution mass spectrometers are more sensitive than the CASSINI Cosmic Dust Analyzer.</p>


1976 ◽  
Vol 31 ◽  
pp. 233-237 ◽  
Author(s):  
Otto E. Berg ◽  
Henry Wolf ◽  
John Rhee

In December, 1973, a Lunar Ejecta and Meteorites (LEAM) experiment was placed in the Taurus-Littrow area of the moon by the Apollo 17 Astronauts. Objectives of the experiment were centered around measurements of impact parameters of cosmic dust on the lunar surface. During preliminary attempts to analyze the data it became evident that the events registered by the sensors could not be attributed to cosmic dust but could only be identified with the lunar surface and the local sun angle. The nature of these data coupled with post-flight studies of instrument characteristics, have led to a conclusion that the LEAM experiment is responding primarily to a flux of highly charged, slowly moving lunar surface fines. Undoubtedly concealed in these data is the normal impact activity from cosmic dust and probably lunar ejecta, as well. This paper is based on the recognition that the bulk of events registered by the LEAM experiment are not signatures of hypervelocity cosmic dust particles, as expected, but are induced signatures of electrostatically charged and transported lunar fines.


2021 ◽  
Author(s):  
Lenz Nölle ◽  
Frank Postberg ◽  
Sascha Kempf ◽  
Jon Hillier ◽  
Nozair Khawaja ◽  
...  

<p><strong>Abstract</strong></p> <p>Mass spectra from the Cosmic Dust Analyzer (CDA) [1] onboard the Cassini spacecraft revealed the existence of different compositional types of icy dust particles in Saturn’s E-ring. Most of these µm to sub-µm water ice grains were ejected from the cryo-volcanoes at the southern polar region of Enceladus and carry different constituents, for example organic compounds or salts [2-5]. These particles are subject to ongoing plasma sputtering during their lifetime in the E-ring [6,7].</p> <p>Recent modelling of the dynamics of E-ring particles has shown that, in the region between the orbital distances of Dione and Rhea, the outwards migration of a proportion of the E-ring dust slows down and almost comes to a halt [8]. Due to the minimum of the V-shaped electrostatic grain equilibrium potential [9] and a polarity reversal of the dust surface charges [10], the semi-major axes of the dust particles’ orbits actually stop growing, forcing the particles to spend a significant part of their lifetime at this distance from Saturn. Therefore, this phenomenon should allow plasma sputtering to operate much longer on the dust particles residing in this region, potentially resulting in detectable alterations to the dust particle properties, e.g. particle composition and size, in this region.</p> <p>Here we present the discovery of a new population of grains within the E ring, which show signs of compositional alteration, best explained by plasma sputtering. The radial frequency distribution of these grains shows a distinct accumulation in the region between the orbits of Dione and Rhea, and may provide evidence of prolonged residence there. Analyses of CDA mass spectra of the grains, interpreted via comparison with laboratory Laser‐Induced Liquid Beam Ion Desorption (LILBID) [11] analogue experiments, indicate the particles to be very salt-rich water ice. In comparison to the previously reported salt-rich particle types, generated from Enceladus’ subsurface ocean [3,4] this new population must possess a far higher salt concentration to explain its observed spectral appearance. We propose that the increase in salt concentration arises from sputtering-induced removal of water from less salty oceanic grains (Type 3) [3,4], during their extended time in the region between Dione and Rhea. This population may therefore represent the first confirmation of the proposed dynamical barrier within Saturn’s E-ring.</p> <p><strong>References</strong></p> <p>[1] Srama, R. et al., The Cassini Cosmic Dust Analyzer, Space Science Reviews, 114, 465-518, 2004.</p> <p>[2] Hillier, J. et al., The composition of Saturn’s E ring, Mon. Not. R. Astron. Soc., 377, 1588–1596, 2007</p> <p>[3] Postberg, F. et al., The E-ring in the vicinity of Enceladus II. Probing the moon’s interior-The composition of E-ring particles, Icarus, 193, 438-454, 2008.</p> <p>[4] Postberg, F. et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459, 1098-1101, 2009.</p> <p>[5] Postberg, F. et al., A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474, 620–622, 2011</p> <p>[6] Jurac, S. et al., Saturn’s E Ring and Production of the Neutral Torus, Icarus, 149, 384–396, 2001</p> <p>[7] Johnson, R. E. et al., Sputtering of ice grains and icy satellites in Saturn’s inner magnetosphere, Planetary and Space Science, 56, 1238–1243, 2008</p> <p>[8] Kempf & Beckmann, Dynamics and long-term evolution of Saturn's E ring particles (in prep.)</p> <p>[9] Mitchell, C. J. et al., Tenuous ring formation by the capture of interplanetary dust at Saturn, JOURNAL OF GEOPHYSICAL RESEARCH, 110, 2005</p> <p>[10] Kempf, S. et al., The electrostatic potential of E ring particles, Planetary and Space Science, 54, 999-1006, 2006</p> <p>[11] Klenner, F. et al., Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space, Rapid Commun Mass Spectrom., 33, 1751–1760, 2019</p>


Sign in / Sign up

Export Citation Format

Share Document