Compositional Indicators for a Dynamical Barrier within Saturn’s E-ring

2021 ◽  
Author(s):  
Lenz Nölle ◽  
Frank Postberg ◽  
Sascha Kempf ◽  
Jon Hillier ◽  
Nozair Khawaja ◽  
...  

<p><strong>Abstract</strong></p> <p>Mass spectra from the Cosmic Dust Analyzer (CDA) [1] onboard the Cassini spacecraft revealed the existence of different compositional types of icy dust particles in Saturn’s E-ring. Most of these µm to sub-µm water ice grains were ejected from the cryo-volcanoes at the southern polar region of Enceladus and carry different constituents, for example organic compounds or salts [2-5]. These particles are subject to ongoing plasma sputtering during their lifetime in the E-ring [6,7].</p> <p>Recent modelling of the dynamics of E-ring particles has shown that, in the region between the orbital distances of Dione and Rhea, the outwards migration of a proportion of the E-ring dust slows down and almost comes to a halt [8]. Due to the minimum of the V-shaped electrostatic grain equilibrium potential [9] and a polarity reversal of the dust surface charges [10], the semi-major axes of the dust particles’ orbits actually stop growing, forcing the particles to spend a significant part of their lifetime at this distance from Saturn. Therefore, this phenomenon should allow plasma sputtering to operate much longer on the dust particles residing in this region, potentially resulting in detectable alterations to the dust particle properties, e.g. particle composition and size, in this region.</p> <p>Here we present the discovery of a new population of grains within the E ring, which show signs of compositional alteration, best explained by plasma sputtering. The radial frequency distribution of these grains shows a distinct accumulation in the region between the orbits of Dione and Rhea, and may provide evidence of prolonged residence there. Analyses of CDA mass spectra of the grains, interpreted via comparison with laboratory Laser‐Induced Liquid Beam Ion Desorption (LILBID) [11] analogue experiments, indicate the particles to be very salt-rich water ice. In comparison to the previously reported salt-rich particle types, generated from Enceladus’ subsurface ocean [3,4] this new population must possess a far higher salt concentration to explain its observed spectral appearance. We propose that the increase in salt concentration arises from sputtering-induced removal of water from less salty oceanic grains (Type 3) [3,4], during their extended time in the region between Dione and Rhea. This population may therefore represent the first confirmation of the proposed dynamical barrier within Saturn’s E-ring.</p> <p><strong>References</strong></p> <p>[1] Srama, R. et al., The Cassini Cosmic Dust Analyzer, Space Science Reviews, 114, 465-518, 2004.</p> <p>[2] Hillier, J. et al., The composition of Saturn’s E ring, Mon. Not. R. Astron. Soc., 377, 1588–1596, 2007</p> <p>[3] Postberg, F. et al., The E-ring in the vicinity of Enceladus II. Probing the moon’s interior-The composition of E-ring particles, Icarus, 193, 438-454, 2008.</p> <p>[4] Postberg, F. et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459, 1098-1101, 2009.</p> <p>[5] Postberg, F. et al., A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474, 620–622, 2011</p> <p>[6] Jurac, S. et al., Saturn’s E Ring and Production of the Neutral Torus, Icarus, 149, 384–396, 2001</p> <p>[7] Johnson, R. E. et al., Sputtering of ice grains and icy satellites in Saturn’s inner magnetosphere, Planetary and Space Science, 56, 1238–1243, 2008</p> <p>[8] Kempf & Beckmann, Dynamics and long-term evolution of Saturn's E ring particles (in prep.)</p> <p>[9] Mitchell, C. J. et al., Tenuous ring formation by the capture of interplanetary dust at Saturn, JOURNAL OF GEOPHYSICAL RESEARCH, 110, 2005</p> <p>[10] Kempf, S. et al., The electrostatic potential of E ring particles, Planetary and Space Science, 54, 999-1006, 2006</p> <p>[11] Klenner, F. et al., Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space, Rapid Commun Mass Spectrom., 33, 1751–1760, 2019</p>

2021 ◽  
Author(s):  
Shane Carberry Mogan ◽  
Orenthal Tucker ◽  
Robert Johnson ◽  
Audrey Vorburger ◽  
Andre Galli ◽  
...  

<p class="western" align="justify">The parameter space for the very uncertain composition of sublimated H2O and its photochemical products H and H2 in Callisto's atmosphere is examined using the Direct Simulaton Monte Carlo (DSMC) method.</p> <p class="western" align="justify">We focus on two significantly different versions of H2O production in which:</p> <p class="western" align="justify">(1) the ice and dark, non-ice/ice-poor material are intimately mixed and H2O sublimates at Callisto's warm day-side temperatures (e.g., as in most atmospheric modeling efforts at Callisto to date [1-4]); and</p> <p class="western" align="justify">(2) the ice and dark, non-ice/ice-poor material are segregated (e.g., consistent with interpretations of images of Callisto's surface taken by Voyager [5, 6] and Galileo [7]) and H2O sublimates at "ice" temperatures [8].</p> <p class="western" align="justify">Our 2D molecular kinetic models track the motion H2O, whose sublimation yield varies several orders of magnitude depending on the description of Callisto's surface, its photochemical products H and H2, and a relatively dense O2 component. Whereas H is assumed to react in the regolith on return to the surface, H2 is assumed to thermalize and re-enter the atmosphere.</p> <p class="western" align="justify">We compare the simulated LOS column densities of H to the detected H corona at Callisto [9], which was suggested to be produced primarily by photodissociation of sublimated H2O. Our goal is to use the corona observations to help constrain the source rate for H2O from Callisto’s complex surface.</p> <p class="western" align="justify"><strong>References</strong></p> <p class="western" align="justify">[1] Liang et al., 2005. Atmosphere of Callisto. <em>Journal of Geophysical Research: Planets</em>.</p> <p class="western" align="justify">[2] Vorburger et al., 2015. Monte-Carlo simulation of Callisto’s exosphere. <em>Icarus</em>.</p> <p class="western" align="justify">[3] Hartkorn et al., 2017. Structure and density of Callisto’s atmosphere from a fluid-kinetic model of its ionosphere: Comparison with Hubble Space Telescope and Galileo observations. <em>Icarus.</em></p> <p class="western" align="justify">[4] Carberry Mogan et al., 2021 (<em>under review</em>). A tenuous, collisional atmosphere on Callisto. <em>Icarus</em>.</p> <p class="western" align="justify">[5] Spencer and Maloney, 1984. Mobility of water ice on Callisto: Evidence and implications. <em>Geophysical Research Letters</em>.</p> <p class="western" align="justify">[6] Spencer, 1987. Thermal segregation of water ice on the Galilean satellites. <em>Icarus</em>.</p> <p class="western" align="justify">[7] Moore et al., 1999. Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission. <em>Icarus</em>.</p> <p class="western" align="justify">[8] Grundy et al., 1999. Near-infrared spectra of icy outer solar system surfaces: Remote determination of H2O ice temperatures. <em>Icarus</em>.</p> <p class="western" align="justify">[9] Roth et al., 2017. Detection of a hydrogen corona at Callisto. <em>Journal of Geophysical Research: Planets</em>.</p>


2021 ◽  
Author(s):  
Ralf Srama ◽  
Jon K. Hillier ◽  
Sean Hsu ◽  
Sascha Kempf ◽  
Masanori Kobayashi ◽  
...  

<p>The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn from 2004 to 2017. Besides the study of Saturn’s E ring and its interaction with the embedded moons, CDA detected nanoparticles in the outer Saturn system moving on unbound orbits and originating primarily from Saturn’s E-ring. Although the instrument was built to detect micron and sub-micron sized particles, nano-sized grains were detected during the flyby at early Jupiter and in the outer environment at Saturn. Fast dust particles with sizes below 10 nm were measured by in-situ impact ionization and mass spectra were recorded. What are the limits of in-situ hypervelocity impact detection and what can be expected with current high-resolution mass spectrometers as flown onboard the missions DESTINY+ or EUROPA? Is the sensitivity of Dust Telescopes sufficient to detect nano-diamonds in interstellar space? This presentation summarizes the current experience of in-situ dust detectors and gives a prediction for future missions. In summary, current Dust Telescopes with integrated high-resolution mass spectrometers are more sensitive than the CASSINI Cosmic Dust Analyzer.</p>


1976 ◽  
Vol 31 ◽  
pp. 233-237 ◽  
Author(s):  
Otto E. Berg ◽  
Henry Wolf ◽  
John Rhee

In December, 1973, a Lunar Ejecta and Meteorites (LEAM) experiment was placed in the Taurus-Littrow area of the moon by the Apollo 17 Astronauts. Objectives of the experiment were centered around measurements of impact parameters of cosmic dust on the lunar surface. During preliminary attempts to analyze the data it became evident that the events registered by the sensors could not be attributed to cosmic dust but could only be identified with the lunar surface and the local sun angle. The nature of these data coupled with post-flight studies of instrument characteristics, have led to a conclusion that the LEAM experiment is responding primarily to a flux of highly charged, slowly moving lunar surface fines. Undoubtedly concealed in these data is the normal impact activity from cosmic dust and probably lunar ejecta, as well. This paper is based on the recognition that the bulk of events registered by the LEAM experiment are not signatures of hypervelocity cosmic dust particles, as expected, but are induced signatures of electrostatically charged and transported lunar fines.


1991 ◽  
Vol 126 ◽  
pp. 257-260
Author(s):  
H. Kohl ◽  
E. Grün

AbstractDust particles originating from comets are an important constituent of the interplanetary dust regime. In order to study the ejection mechanisms from the cometary nucleus surface simulation experiments in the laboratory have been performed. Samples consisting of water ice, carbon dioxide ice and dust grains have been studied when they are irradiated by artificial sunlight within a cooled vacuum system. It has been shown that particle emission is extremely dependent on the initial composition of the samples. For samples with a distinct amount of non-volatile, mineral particles the formation of a dust mantle and, as a consequence, rapid decrease of particle ejection has been observed.


1991 ◽  
Vol 126 ◽  
pp. 11-14
Author(s):  
J.C. Mandeville

AbstractInterplanetary and near-earth space contains solid objects whose size distribution continuously covers the interval from submicron sized particles to km sized asteroids or comets. Two French experiments partly devoted to the detection of cosmic dust have been flown recently in space. One on the NASA Long Duration Exposure Facility (LDEF), and one on the Soviet MIR Space Station. A variety of sensors and collecting devices will make possible the study of cosmic particles after recovery of exposed material. Flux mass distribution is expected to be derived from craters counts, with a good accuracy. Remnants of particles, suitable for chemical identification are expected to be found within stacked foil detectors. Discrimination between extraterrestrial particles and man-made orbital debris will be possible.


1971 ◽  
Vol 13 ◽  
pp. 299-310
Author(s):  
J. F. Friichtenicht ◽  
N. L. Roy ◽  
D. G. Becker

Determination of the elemental composition of cosmic dust particles by means of an impact ionization time-of-flight mass spectrometer has been investigated at several institutions. In most configurations, the instrument supplies the identity of ion groups of both target and particle materials extracted from the impact plasma and the number of ions contained in each group. Experiments have shown that the fractional ionization of a given species is not constant with impact velocity nor is the fractional ionization the same for different kinds of atoms. A model of the impact ionization effect developed at TRW involves an equilibrium plasma condition with the consequence that the fractional ionization for an arbitrary atomic species can be specified by the Saha equation if the plasma volume (V) and temperature (T) are known. It follows that T can be determined by taking the ratio of the Saha equations for two elements present in the target in known concentration. (Taking the ratio negates the requirement of knowing V.) Given T, the procedure can be reversed to yield the relative abundance of elements contained in the impacting particle. To test the model, a PbZrO3-PbTiO3 target was bombarded with high velocity Fe, MoB, and NiAl particles and the number of Pb, Ti, and Zr ions was determined in a time-of-flight mass spectrometer. For each event, the relative abundance of Ti to Pb was taken as known (from electron microprobe analysis) and T was determined from the Ti-Pb measurement. The Zr to Pb ratio was found to be in good agreement with the microprobe analysis (0.38 calculated mean value compared to 0.34 actual). The result was valid for all particle materials and for a velocity range 17<v<47 km/s. T ranged from 3300 to 11 500° K and was only mildly velocity dependent.


2009 ◽  
Vol 27 (3) ◽  
pp. 1119-1128 ◽  
Author(s):  
O. Havnes ◽  
L. H. Surdal ◽  
C. R. Philbrick

Abstract. The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5–83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~−3.5×109 e m−3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2–3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=−10−11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85–92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~−108 e m−3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01. In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20–35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.


2012 ◽  
Vol 113 (18) ◽  
pp. 2561-2566 ◽  
Author(s):  
Miroslav Kocifaj ◽  
Jozef Klačka ◽  
Gorden Videen ◽  
Igor Kohút

2020 ◽  
Author(s):  
Marina Sánchez-Bayton ◽  
Erwan Treguier ◽  
Miguel Herraiz ◽  
Patrick Martin ◽  
Akos Kereszturi ◽  
...  

&lt;p&gt;Abstract&lt;/p&gt; &lt;p&gt;This work focuses on the study of the characteristics and possible origin of distinct positive topographic landforms located in Scandia Cavi and Olympia Undae [1]. These are two regions close to the northern polar cap of Mars and which are of special interest because of the potential joint presence of volcanism, glacial processes and gypsum deposits which could be related to the past presence of liquid water there. Such processes can cast light on the geological evolution of the area.&lt;/p&gt; &lt;p&gt;We use images from Mars Express and Mars Reconnaissance Orbiter, as well as MOLA topographic profiles from Mars Global Surveyor to investigate 201 small and medium-size landforms in these two regions. These landforms have a priori similar characteristics, such as similar sizes and forms, but their origin might not be the same. A detailed analysis of images and morphometric parameters has allowed their classification into 6 groups, which are the so-called cratered cones, impact craters, ambiguous craters, simple and peaked domes, and irregular structures.&lt;/p&gt; &lt;p&gt;Different possible origins for these landforms are discussed such as impact, aeolian, glacial and volcanic processes. The possible implications for relationships between an available volcanic heat source nearby water ice and gypsum deposits make the area particularly interesting toward further constraining the region&amp;#8217;s geology.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;p&gt;References&lt;/p&gt; &lt;p&gt;[1] S&amp;#225;nchez-Bayton et al., Morphological analyses of small and medium size landforms in Scandia Cavi and Olympia Undae, North Polar Region of Mars, under review at Journal of Geophysical Research: Planets&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document