scholarly journals Accretion on CO White Dwarfs. Influence of the External Burning Shells on the Evolution

1990 ◽  
Vol 122 ◽  
pp. 388-389
Author(s):  
M. Hernanz ◽  
J. José ◽  
J. Isern

AbstractThe influence of accretion in the evolution of CO white dwarfs is calculated, up to the thermonuclear runaway, with a previous analysis of the H-He burning shell. For this later study, a two-zone model is developed, consisting of two thin shells in plane-parallel approximation. The influence in the inner core evolution is discussed.

1997 ◽  
Vol 189 ◽  
pp. 209-216
Author(s):  
D. J. Hillier

The modeling of hot star atmospheres falls into two broad classes: those where the plane parallel approximation can be used, and those where the effects of spherical extension and stellar winds are important. In both cases non-LTE modeling is a necessity for reliable spectroscopic analyses.While simple ions (e.g., H, He I, and He II) have been treated routinely in non-LTE for many years it is only recently that advances in computing power, computational techniques, and the availability of atomic data have made it feasible to perform non-LTE line blanketing calculations. Present models, with varying degrees of approximation and sophistication, are now capable of treating the effects of tens of thousands of lines. We review the latest efforts in incorporating non-LTE line blanketing, highlighting recent advances in the modeling of 0 stars, hot sub-dwarfs, Wolf-Rayet stars, novae, and supernovae.


1979 ◽  
Vol 53 ◽  
pp. 290-293
Author(s):  
G. Siegfried Kutter ◽  
Warren M. Sparks

We assume that the outburst of classical novae is the result of transfer of H-rich material from a red secondary star to a He or C/O white dwarf and the development of a thermonuclear runaway in the e-degenerate “base of the accreted H-rich envelope. Based on these assumptions, we have investigated this problem in several stages of increasing theoretical complexity and physical realism.


1978 ◽  
Vol 80 ◽  
pp. 387-390
Author(s):  
Keiichi Kodaira

In the late phases of stellar evolution, evolutionary tracks of stars with different masses come together along the Hayashi line in the HR diagram. The theoretical HR diagram (log L, log Teff) is accordingly partially degenerate in the domain of late-type giants and supergiants, with respect to the third parameter, the stellar mass M. The stellar radius, R, being determined by log L and log Teff, the mass determines the surface gravity log g at the radius R. These parameters enable us to transform a point in the theoretical HR diagram to the corresponding point in the empirical HR diagram MV, (R-I) or spectral type. This transformation is conventionally carried out within the framework of the plane-parallel approximation in stellar atmospheres, and the parameters for the abscissa of the empirical HR diagram are dependant upon Teffand log g alone, irrespective of the mass itself. In this case, the parameter M indirectly affects the observable quantities through log g, but the effects of a variation by Δlog g=±0.5, corresponding to Δlog M=±0.5, are almost insignificant (cf. Tsuji 1976). The transformation between the theoretical and the empirical HR diagram is, therefore, almost one-to-one, within the framework of the plane-parallel approximation. Late-type giants and supergiants, however, have moderately extended atmospheres in general (cf. Schmid-Burgk and Scholz 1975), and their photometric colors and spectra are expected to be influenced by the sphericity of the atmospheric structure. Consequently, in comparing empirical HR diagrams with theoretical ones, it is important to know how atmospheric sphericity affects the transformation in the degenerate domains of the theoretical diagram.


1990 ◽  
Vol 169 (1-2) ◽  
pp. 193-195
Author(s):  
J. Jos� ◽  
M. Hernanz ◽  
J. Isern

1990 ◽  
Vol 122 ◽  
pp. 405-415 ◽  
Author(s):  
Ronald F. Webbink

AbstractThermonuclear models of recurrent novae demand white dwarf accretors near the Chandrasekhar mass. In this case, the known recurrent novae should possess classical counterparts bearing the same structural parameters and space distribution, save for having only marginally less massive white dwarfs. Furthermore, recurrent novae should occur exclusively on ONeMg white dwarfs, and display in their ejecta either neon-group overabundances (if the white dwarfs are eroded through an outburst cycle) or no heavy element enhancements whatever (if the white dwarfs increase in mass).The known recurrent novae are reviewed in the light of these and other characteristics of thermonuclear runaway models, and also in terms of accretion-powered events, with special attention to the difficulties encountered by both models. Pivotal tests to distinguish between between thermonuclear and accretion models rely on the fact that the latter require far more mass transferred than the former to produce the same outburst energetics. Thus, photospheric opacities in thermonuclear recurrent novae are dominated by scattering; those in recurrent accretion events by true absorption. Orbital period changes through outburst are 103 times greater in accretion models than in thermonuclear models.


2011 ◽  
Vol 7 (S281) ◽  
pp. 44-51
Author(s):  
Christopher A. Tout

AbstractWhite dwarfs grow as the cores of red giants and, in particular, carbon-oxygen white dwarfs grow in asymptotic giant branch (AGB) stars. The evolution of an AGB star is a competition between growth of the core and loss of the stellar envelope, typically in a wind. It is complicated by thermal pulses driven periodically by unstable helium shell burning. Dredge up following such pulses delays core growth. The compression at the center of a cold carbon-oxygen core means that carbon ignites when it reaches a mass of 1.38 M⊙. This begins the familiar thermonuclear runaway of the Type Ia supernova (SN Ia). At higher temperatures carbon can ignite more gently and burn mostly to neon to leave a core rich in oxygen, neon and magnesium. Such cores can go on to collapse to neutron stars with a release of only neutrinos. Accepted mass-loss prescriptions for giants mean that the range of masses of single stars that leave carbon-oxygen white dwarfs is somewhere from around 1 to 8 M⊙. We investigate how unusual mass loss, perhaps brought about by interaction with a binary companion, can radically alter the single star picture. Though population syntheses treat some possibilities with various prescriptions, there is sufficient doubt over the physics, the observations, and the implementation of mass loss and binary interaction that there is scope for several more unusual progenitors of carbon-oxygen white dwarfs and hence SNe Ia.


1994 ◽  
Vol 146 ◽  
pp. 265-270
Author(s):  
M. J. Seaton

LetIv(r, θ) be the intensity of radiation of frequencyv, at a distancerfrom the centre of a star and in a direction making an angleθto the outward normal. In a plane-parallel approximation the equation of radiative transfer iswhere𝛋vis the opacity andjvthe emissivity. The net outward flux of radiant energy isand the flux integrated over all frequencies is


2020 ◽  
Vol 496 (1) ◽  
pp. 894-902
Author(s):  
Abhay Gupta ◽  
Banibrata Mukhopadhyay ◽  
Christopher A Tout

ABSTRACT We explore the luminosity L of magnetized white dwarfs and its effect on the mass–radius relation. We self-consistently obtain the interface between the electron degenerate-gas dominated inner core and the outer ideal gas surface layer or envelope by incorporating both the components of gas throughout the model white dwarf. This is obtained by solving the set of magnetostatic equilibrium, photon diffusion, and mass conservation equations in the Newtonian framework, for different sets of luminosity and magnetic field. We appropriately use magnetic opacity, instead of Kramer’s opacity, wherever required. We show that the Chandrasekhar limit is retained, even at high luminosity up to about $10^{-2}\, L_\odot$ but without magnetic field, if the temperature is set constant inside the interface. However, there is an increased mass for large-radius white dwarfs, an effect of photon diffusion. Nevertheless, in the presence of strong magnetic fields, with central strength of about 1014 G, super-Chandrasekhar white dwarfs, with masses of about $1.9\, {\rm M}_{\odot }$, are obtained even when the temperature inside the interface is kept constant. Most interestingly, small-radius magnetic white dwarfs remain super-Chandrasekhar even if their luminosity decreases to as low as about $10^{-20}\, L_{\odot }$. However, their large-radius counterparts in the same mass–radius relation merge with Chandrasekhar’s result at low L. Hence, we argue for the possibility of highly magnetized, low luminous super-Chandrasekhar mass white dwarfs that, owing to their faintness, can be practically hidden.


Sign in / Sign up

Export Citation Format

Share Document