photon diffusion
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2100 (1) ◽  
pp. 012022
Author(s):  
A V Galaktionov

Abstract Energy transfer by thermal radiation in a dispersed medium with a variable refractive index is discussed. This transfer can be described by a surprisingly simple diffusion equation. The process is naturally to interpret as the photon diffusion. The diffusion equation is free from strict conditions of applicability of the radiation transfer equation, which are usually not satisfied in disperse media with densely packed inhomogeneities. Quantum constraints on the value of the photon diffusion coefficient are derived. These restrictions turn out to be similar to the conditions for the applicability of geometric optics. The lower limit of the thermal conductivity coefficient is obtained, which is easier to verify in the experiment. An independent derivation of this limitation is given from considerations of symmetry and dimension.


2021 ◽  
Vol 35 (2) ◽  
pp. 345-382
Author(s):  
Daqing Piao

Biophoton emission remains controversial. The photo-genic origin of biophoton has been attributed to the oxidative stress or free radical production. However, there are considerable gaps in quantitative understanding of biophoton emission. I propose an analytical hypothesis for interpreting a few patterns of steady-state biophoton emission of human, including the dependency on age, the diurnal variation, and the geometric asymmetry associated with serious asymmetrical pathological conditions. The hypothesis is based on an alternative form of energy state, termed vivo-nergy, which is associated with only metabolically active organisms that are also under neuronal control. The hypothesis projects a decrease of the vivo-nergy in human during growth beyond puberty. The hypothesis also proposes a modification of the vivo-nergy by the phases of systematic or homeostatic physiology. The hypothesis further postulates that the deviation of the physiology-modified vivo-nergy from the pre-puberty level is deteriorated by acquired organ-specific pathological conditions. A temporal differential change of vivo-nergy is hypothesized to proportionally modulate oxidative stress that functions as the physical source of biophoton emission. The resulted steady-state diffusion of the photon emitted from a photo-genic source in a human geometry simplified as a homogeneous spherical domain is modeled by photon diffusion principles incorporating an extrapolated zero-boundary condition. The age and systematic physiology combined determines the intensity of the centered physiological steady-state photo-genic source. An acquired pathology sets both the intensity and the off-center position of the pathological steady-state photo-genic source. When the age-commemorated, physiology-commanded, and pathology-controlled modifications of the steady-state photo-genetic sources are implemented in the photon diffusion model, the photon fluence rate at the surface of the human-representing spherical domain reveals the patterns on age, the temporal variation corresponding to systematic physiology, and the geometric asymmetry associated with significant asymmetric pathological condition as reported for spontaneous biophoton emission. The hypothesis, as it provides conveniences for quantitative estimation of biophoton emission patterns, will be extended in future works towards interpreting the temporal characteristics of biophoton emission under stimulation.           


2021 ◽  
Author(s):  
Caterina Amendola ◽  
Lorenzo Spinelli ◽  
Davide Contini ◽  
Agnese De Carli ◽  
cesare martinelli ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matteo Chincarini ◽  
Emanuela Dalla Costa ◽  
Lina Qiu ◽  
Lorenzo Spinelli ◽  
Simona Cannas ◽  
...  

Abstract The aim of this work was to critically assess if functional near infrared spectroscopy (fNIRS) can be profitably used as a tool for noninvasive recording of brain functions and emotions in sheep. We considered an experimental design including advances in instrumentation (customized wireless multi-distance fNIRS system), more accurate physical modelling (two-layer model for photon diffusion and 3D Monte Carlo simulations), support from neuroanatomical tools (positioning of the fNIRS probe by MRI and DTI data of the very same animals), and rigorous protocols (motor task, startling test) for testing the behavioral response of freely moving sheep. Almost no hemodynamic response was found in the extra-cerebral region in both the motor task and the startling test. In the motor task, as expected we found a canonical hemodynamic response in the cerebral region when sheep were walking. In the startling test, the measured hemodynamic response in the cerebral region was mainly from movement. Overall, these results indicate that with the current setup and probe positioning we are primarily measuring the motor area of the sheep brain, and not probing the too deeply located cortical areas related to processing of emotions.


2020 ◽  
Vol 496 (1) ◽  
pp. 894-902
Author(s):  
Abhay Gupta ◽  
Banibrata Mukhopadhyay ◽  
Christopher A Tout

ABSTRACT We explore the luminosity L of magnetized white dwarfs and its effect on the mass–radius relation. We self-consistently obtain the interface between the electron degenerate-gas dominated inner core and the outer ideal gas surface layer or envelope by incorporating both the components of gas throughout the model white dwarf. This is obtained by solving the set of magnetostatic equilibrium, photon diffusion, and mass conservation equations in the Newtonian framework, for different sets of luminosity and magnetic field. We appropriately use magnetic opacity, instead of Kramer’s opacity, wherever required. We show that the Chandrasekhar limit is retained, even at high luminosity up to about $10^{-2}\, L_\odot$ but without magnetic field, if the temperature is set constant inside the interface. However, there is an increased mass for large-radius white dwarfs, an effect of photon diffusion. Nevertheless, in the presence of strong magnetic fields, with central strength of about 1014 G, super-Chandrasekhar white dwarfs, with masses of about $1.9\, {\rm M}_{\odot }$, are obtained even when the temperature inside the interface is kept constant. Most interestingly, small-radius magnetic white dwarfs remain super-Chandrasekhar even if their luminosity decreases to as low as about $10^{-20}\, L_{\odot }$. However, their large-radius counterparts in the same mass–radius relation merge with Chandrasekhar’s result at low L. Hence, we argue for the possibility of highly magnetized, low luminous super-Chandrasekhar mass white dwarfs that, owing to their faintness, can be practically hidden.


2020 ◽  
Vol 128 (6) ◽  
pp. 832
Author(s):  
А.Ю. Потлов ◽  
С.В. Фролов ◽  
С.Г. Проскурин

The specific features of photon diffusion of low-coherence pulsed irradiation in phantoms of soft biological tissues (blood-saturated tissues of the brain, breast, etc.) are described. The results of photon migration simulation using the Diffusion Approximation to the Radiation Transfer Equation (RTE) are compared with ones of the Monte Carlo simulations. It has been confirmed that the Photon Density Normalized Maximum (PDNM) moves towards the center of the investigated object in case of relatively uniform and strongly scattering media. In the presence of inhomogeneities, type of the PDNM motion changes drastically. Presence of an absorbing inhomogeneity in the medium directs trajectory of the PDNM motion of towards the point symmetric to the inhomogeneity relative to the geometric center of the investigated object. In case of scattering the PDNM moves toward the direction of the center of the scattering inhomogeneity.


2019 ◽  
Vol 72 (1) ◽  
Author(s):  
Hajime Inoue

Abstract Structures of X-ray emitting magnetic polar regions on neutron stars in X-ray pulsars are studied in the accretion rate range 1017 g s−1–1018 g s−1. It is shown that a thin but tall, radiation-energy-dominated, X-ray emitting polar cone appears at each of the polar regions. The height of the polar cone is several times as large as the neutron star radius. The energy gain due to the gravity of the neutron star in the polar cone exceeds the energy loss due to photon diffusion in the azimuthal direction of the cone, and a significant amount of energy is advected to the neutron star surface. Then, the radiation energy carried with the flow should become large enough for the radiation pressure to overcome the magnetic pressure at the bottom of the cone. As a result, the matter should expand in the tangential direction along the neutron star surface, dragging the magnetic lines of force, and form a mound-like structure. The advected energy to the bottom of the cone should finally be radiated away from the surface of the polar mound and the matter should be settled on the neutron star surface there. From such configurations, we can expect an X-ray spectrum composed of a multi-color blackbody spectrum from the polar cone region and a quasi-single blackbody spectrum from the polar mound region. These spectral properties agree with observations. A combination of a fairly sharp pencil beam and a broad fan beam is expected from the polar cone region, while a broad pencil beam is expected from the polar mound region. With these X-ray beam properties, basic patterns of pulse profiles of X-ray pulsars can be explained too.


Sign in / Sign up

Export Citation Format

Share Document