scholarly journals Structure and Composition of White Dwarf Atmospheres and Convection Zones

1979 ◽  
Vol 53 ◽  
pp. 223-244
Author(s):  
K.H. Böhm

SummaryWe present a brief review of the basic properties of white dwarf atmospheres) convection zones and corona models emphasizing qualitative and intuitive aspects.1. Atmospheres: We restrict our discussion essentially to very hot and very cool atmospheres since these are especially interesting. With regard to the first type of objects we study the fundamental differences between DA and non-DA models and between their surface fluxes. We discuss the important role of electron scattering in determining the EUV spectra of these objects. The differences between DAs and non-DAs with regard to backwarming effect and surface cooling are summarized.In our discussion of very cool non-DA atmospheres we emphasize the importance of the additional energy transport mechanisms convection and conduction which should both be very effective for Teff < 4000K and which lead to a very flat temperature gradient. This small gradient must lead to a rather featureless surface flux.2. Convection Zones. After a survey of the basic numerical results in this field we investigate the question whether convection in white dwarfs has the same basic properties as convection in other stars. We find that contrary to intuitive expectations the Rayleigh number in very cool non-DAs is higher than in the sun (indicating very turbulent convection). The Prandtl number in these objects is 6 to 7 orders of magnitude higher than in the sun.3. Coronae. The basic methods of the calculation of coronae for white dwarfs are very briefly discussed. We present some results for DA and non-DA stars from unpublished work by D.O. Muchmore and the author. It uses revised values for the emissivities. Only non-DA coronae are of practical interest. DA coronae have much lower densities and temperatures. White dwarf coronae do not generate a stellar wind.

1983 ◽  
Vol 72 ◽  
pp. 181-197
Author(s):  
A. R. King

The problem of column accretion on to white dwarfs in the AM Her and DQ Her systems is reviewed. Particular attention is paid to recent progress in explaining the large soft X-ray - EUV fluxes observed in these systems in terms of nonlocal electron energy transport into the white dwarf photosphere.


2019 ◽  
pp. 101-109
Author(s):  
Nicholas Mee

After consuming their nuclear fuel, most stars lose their outer envelopes and all that remains is the collapsed core of the star, an object known as a white dwarf. Ever since Galileo pointed a telescope at the night sky, each advance in telescope making has resulted in sensational discoveries. Alvan Clark & Sons ground some of the biggest telescope lenses ever made. Alvan Graham Clark discovered Sirius B while testing one of these lenses. Eddington deduced that Sirius B has a size similar to that of the Earth, but with the mass of the Sun, and was an example of a new class of stars—white dwarfs. The easiest white dwarf to see with a telescope orbits the star Keid. In Star Trek, the planet Vulcan orbits the star Keid A.


1988 ◽  
Vol 108 ◽  
pp. 86-87
Author(s):  
Hiromoto Shibahashi ◽  
Takashi Sekii ◽  
Steven Kawaler

Since light variability in white dwarfs was first discovered twenty years ago, eighteen DA white dwarfs, several pulsating DB white dwarfs, and hotter pre-white dwarfs have so far been found to be pulsating variables. The most conspicuous characteristics of pulsations in these stars are that they seem to consist of multiple g-modes of nonradial oscillations. Attention should be paid to multiplicity of modes. Stimulated by the success of helioseimology, a research field called ‘asteroseismology’, in which we may probe the internal structure of stars by means of observations of their oscillations, is going to develop. How well such a seismological approach succeeds is dependent on how many modes are observed in each of stars. Since the number of modes of an individual pulsating white dwarf is larger than those of other types of pulsating stars but for the Sun, the seismological study may be the most promising as to the white dwarfs. In fact, by applying the asymptotic relations among eigenfrequencies of high order g-modes with low degree, the degreel, and the radial ordern, Kawaler(1987a,b,c) succeeded to get some constraints on the physical quantities of some of pulsating white dwarfs.


2002 ◽  
Vol 185 ◽  
pp. 606-607
Author(s):  
M. Takata ◽  
M.H. Montgomery

AbstractInversion methods have been used successfully for the Sun. The stars with the next richest set of observed frequencies are the white dwarfs. We consider here the viability of numerical inversions for these stars. We find that, while the number of presently observed modes in the white dwarf GD 358 is too small for structural inversions, such inversions would be possible if the frequencies of all modes with 1 ≤ l ≤ 3 were observed. This is possible for space observations by e.g. Eddington.


2000 ◽  
Vol 198 ◽  
pp. 485-486
Author(s):  
Wayne Landsman

We review the advantages of using hot white dwarfs (WDs) as probes of the deuterium abundance in the local interstellar medium. We then discuss advantages of the Space Telescope Imaging Spectrograph (STIS) for such observations, as compared with earlier observations with the Goddard High Resolution Spectrograph (GHRS). The GHRS Ly α profile of the white dwarf HZ 43 is probably modified by the hot ‘hydrogen wall’ surrounding the Sun; but despite this complication, the sightline remains a promising one for an accurate determination of the deuterium abundance in the local interstellar medium.


2020 ◽  
Vol 501 (1) ◽  
pp. 676-682
Author(s):  
F Lagos ◽  
M R Schreiber ◽  
M Zorotovic ◽  
B T Gänsicke ◽  
M P Ronco ◽  
...  

ABSTRACT The discovery of a giant planet candidate orbiting the white dwarf WD 1856+534 with an orbital period of 1.4 d poses the questions of how the planet reached its current position. We here reconstruct the evolutionary history of the system assuming common envelope evolution as the main mechanism that brought the planet to its current position. We find that common envelope evolution can explain the present configuration if it was initiated when the host star was on the asymptotic giant branch, the separation of the planet at the onset of mass transfer was in the range 1.69–2.35 au, and if in addition to the orbital energy of the surviving planet either recombination energy stored in the envelope or another source of additional energy contributed to expelling the envelope. We also discuss the evolution of the planet prior to and following common envelope evolution. Finally, we find that if the system formed through common envelope evolution, its total age is in agreement with its membership to the Galactic thin disc. We therefore conclude that common envelope evolution is at least as likely as alternative formation scenarios previously suggested such as planet–planet scattering or Kozai–Lidov oscillations.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (&gt;60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David Curtin ◽  
Jack Setford

Abstract Dark matter could have a dissipative asymmetric subcomponent in the form of atomic dark matter (aDM). This arises in many scenarios of dark complexity, and is a prediction of neutral naturalness, such as the Mirror Twin Higgs model. We show for the first time how White Dwarf cooling provides strong bounds on aDM. In the presence of a small kinetic mixing between the dark and SM photon, stars are expected to accumulate atomic dark matter in their cores, which then radiates away energy in the form of dark photons. In the case of white dwarfs, this energy loss can have a detectable impact on their cooling rate. We use measurements of the white dwarf luminosity function to tightly constrain the kinetic mixing parameter between the dark and visible photons, for DM masses in the range 10−5–105 GeV, down to values of ϵ ∼ 10−12. Using this method we can constrain scenarios in which aDM constitutes fractions as small as 10−3 of the total dark matter density. Our methods are highly complementary to other methods of probing aDM, especially in scenarios where the aDM is arranged in a dark disk, which can make direct detection extremely difficult but actually slightly enhances our cooling constraints.


2021 ◽  
Vol 503 (4) ◽  
pp. 5397-5408
Author(s):  
Mukremin Kilic ◽  
P Bergeron ◽  
Simon Blouin ◽  
A Bédard

ABSTRACT We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3\, {\rm M}_{\odot }$ if they had pure H atmospheres and CO cores, including two outliers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to M = 1.334 M⊙, which corresponds to the high-density limit of our equation-of-state tables, ρ = 109 g cm−3. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.


2017 ◽  
Vol 74 (4) ◽  
pp. 1149-1168 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Eric D. Skyllingstad ◽  
Paquita Zuidema ◽  
Arunchandra S. Chandra

Abstract Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere. Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux. Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.


Sign in / Sign up

Export Citation Format

Share Document