scholarly journals On the evolutionary time scale of the accreting component in massive close binaries: consequences for the supernova event

1981 ◽  
Vol 59 ◽  
pp. 465-468
Author(s):  
C. Doom ◽  
J.P. De Grève

AbstractThe remaining core hydrogen burning lifetime after a case B of mass exchange is computed for the mass gaining component in massive close binaries. Effects of stellar wind mass loss and mass loss during Roche Lobe OverFlow (RLOF) are included. Consequences for the evolutionary scenario are discussed.

1979 ◽  
Vol 83 ◽  
pp. 409-414
Author(s):  
D. Vanbeveren ◽  
J.P. De Grève ◽  
C. de Loore ◽  
E.L. van Dessel

It is generally accepted that massive (and thus luminous) stars lose mass by stellar wind, driven by radiation force (Lucy and Solomon, 1970; Castor et al. 1975). For the components of massive binary systems, rotational and gravitational effects may act together with the radiation force so as to increase the mass loss rate. Our intention here is to discuss the influence of a stellar wind mass loss on the evolution of massive close binaries. During the Roche lobe overflow phase, mass and angular momentum can leave the system. Possible reasons for mass loss from the system are for example the expansion of the companion due to accretion of the material lost by the mass losing star (Kippenhahn and Meyer-Hofmeister, 1977) or the fact that due to the influence of the radiation force in luminous stars, mass will be lost over the whole surface of the star and not any longer through a possible Lagrangian point as in the case of classical Roche lobe overflow (Vanbeveren, 1978). We have therefore investigated the influence of both processes on binary evolution. Our results are applied to 5 massive X-ray binaries with a possible implication for the existence of massive Wolf Rayet stars with a very close invisible compact companion. A more extended version of this talk is published in Astronomy and Astrophysics (Vanbeveren et al. 1978; Vanbeveren and De Grève, 1978). Their results will be briefly reviewed.


1981 ◽  
Vol 59 ◽  
pp. 275-278 ◽  
Author(s):  
D. Vanbeveren

Helium burning stars with masses between 10 Mo and 40 Mo are evolved up to core helium exhaustion including mass loss by stellar wind at rates between 10-5 Mo/yr and 10-4 Mo/yr appropriate for WR stars. Different M formalisms were used. It should however be noted that the results presented here are only marginally dependent on this formalism. The initial models contain a small hydrogen shell. The atmospherical hydrogen abundance Xatm = 0.2-0.3. These models correspond to primary remnants (with hydrogen ZAMS masses between 30 M0 and 100 M0) after a case B mode of mass transfer in close binaries, or to stars after a red giant phase of huge mass loss comparable to late case B remnants after Roche lobe overflow. Evolutionary details can be found elsewhere (Vanbeveren, D., Ph.D. Thesis, Vrije Universiteit Brussel) and will not be discussed here. I want to focus on two applications


1979 ◽  
Vol 83 ◽  
pp. 431-445 ◽  
Author(s):  
Peter S. Conti

The stellar wind mass loss rates of at least some single Of type stars appear to be sufficient to remove much if not all of the hydrogen-rich envelope such that nuclear processed material is observed at the surface. This highly evolved state can then be naturally associated with classic Population I WR stars that have properties of high luminosity for their mass, helium enriched composition, and nitrogen or carbon enhanced abundances. If stellar wind mass loss is the dominant process involved in this evolutionary scenario, then stars with properties intermediate between Of and WR types should exist. The stellar parameters of luminosity, temperature, mass and composition are briefly reviewed for both types. All late WN stars so far observed are relatively luminous like Of stars, and also contain hydrogen. All early WN stars, and WC stars, are relatively faint and contain little or no hydrogen. The late WN stars seem to have the intermediate properties required if a stellar wind is the dominant mass loss mechanism that transforms an Of star to a WR type.


1981 ◽  
Vol 59 ◽  
pp. 265-270
Author(s):  
L.R. Yungelson ◽  
A.G. Massevitch ◽  
A.V. Tutukov

It is shown that mass loss by stellar wind with rates observed in O, B-stars cannot change qualitatively their evolution in the core hydrogen-burning stage. The effects, that are usually attributed to the mass loss, can be explained by other causes: e.g., duplicity or enlarged chemically homogeneous stellar cores.The significance of mass loss by stellar wind for the evolution of massive stars was studied extensively by numerous authors (see e.g. Chiosi et al. (1979) and references therein). However, the problem is unclear as yet. There does not exist any satisfactory theory of mass loss by stars. Therefore one is usually forced to assume that mass loss rate depends on some input parameters.


1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


1982 ◽  
Vol 69 ◽  
pp. 187-189
Author(s):  
F. Mardirossian ◽  
G. Giuricin

AbstractWe have examined the observational data of 102 Algols in order to clarify the implications on their evolutionary scenario of various assumptions concerning mass and angular momentum loss during mass transfer. We have found that case B mass exchange is strongly favoured for Algols of relatively low total mass (~ M < 7 Mʘ), while case A predominates, though not so widely as expected in Algols of higher total mass.


2008 ◽  
Vol 4 (S252) ◽  
pp. 365-370 ◽  
Author(s):  
S. E. de Mink ◽  
M. Cantiello ◽  
N. Langer ◽  
S.-Ch. Yoon ◽  
I. Brott ◽  
...  

AbstractRotational mixing a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40M⊙) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.


Sign in / Sign up

Export Citation Format

Share Document