scholarly journals Hydrogen Depletion and the Evolution of Cataclysmic Variables to Low Mass X-Ray Binaries

1987 ◽  
Vol 93 ◽  
pp. 681-685
Author(s):  
R.E. Williams ◽  
M.M. Phillips ◽  
S.R. Heathcote

AbstractCertain cataclysmic variables may evolve into low mass X-ray binaries if the white dwarfs can steadily accrete sufficient mass to exceed the Chandrasekhar limit. We present spectra of a recurrent nova and a low mass X-ray binary which are very similar to each other, and are also unusual for the strengths of the observed He II emission. We suggest that this similarity is not coincidental, but is evidence for an evolutionary link between the two classes of objects. A hydrogen depletion in the accreting gas is implied from the emission line fluxes, and may be an important parameter in determining whether accreted gas remains bound to the white dwarf, enabling eventual core collapse to occur.

2004 ◽  
Vol 194 ◽  
pp. 228-228
Author(s):  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch ◽  
K. Werner

We have developed a new code for the calculation of synthetic spectra and vertical structures of accretion disks in cataclysmic variables and compact X-ray binaries. Here we present results for the CV system AM CVn.AM CVn stars are a special type of cataclysmic variables, also called helium cataclysmics. They are systems of interacting binary white dwarfs, consisting of a degenerate C-O white dwarf primary and a low mass semi-degenerate secondary. The secondary loses mass, almost, pure helium, to the primary, forming an accretion disk. They have all in common a helium-rich composition, analoguous to the hydrogen-rich cataclysmic variables. They show photometric variabilities on time scales of ~ 1000s, the prototype of the class, AM CVn, e.g. exhibits a variability of ~ 18 min (Nelemans et al. 2001).


1987 ◽  
Vol 93 ◽  
pp. 395-411
Author(s):  
K. Nomoto ◽  
M. Hashimoto

AbstractIf the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e, composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period X-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae.


2019 ◽  
Vol 14 (S351) ◽  
pp. 367-376
Author(s):  
Maureen van den Berg

AbstractThe features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations withXMM-Newton and certainlyChandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.


1983 ◽  
Vol 72 ◽  
pp. 155-172
Author(s):  
Brian Warner

Until 1976, cataclysmic variable star research proceeded with few requirements for the inclusion of magnetic fields in theoretical models. Although models for low-mass X-ray binaries stressed the importance of magnetic fields (Lamb et at. 1973) and there was an increasing number of known magnetic single white dwarfs (Angel 1977), and a magnetised white dwarf had been one of the models proposed to explain the rapid oscillations in DQ Her (Herbst et al. 1974, Katz 1975), there was no anticipation of the more general role that magnetic fields now seem destined to play. The two major reviews of the time (Robinson 1976, Warner 1976) scarcely considered the presence of magnetic fields.


1990 ◽  
Vol 115 ◽  
pp. 187-196
Author(s):  
T. R. Kallman

AbstractAccretion disk coronae are likely to be the dominant site for X-ray absorption and reprocessed emission in low mass X-ray binaries, and may be present in other classes of compact X-ray sources such as active galactic nuclei and cataclysmic variables. In spite of this fact, and in spite of the observational evidence for their existence, there remain many uncertainties about the structure of accretion disk coronae. This paper will discuss the coronal structure and dynamics, their X-ray spectral signatures including coupling to the variability behavior of compact X-ray sources, and the major unsolved theoretical issues surrounding them.


2007 ◽  
Vol 3 (S246) ◽  
pp. 301-310 ◽  
Author(s):  
Frank Verbunt ◽  
Dave Pooley ◽  
Cees Bassa

AbstractLow-mass X-ray binaries, recycled pulsars, cataclysmic variables and magnetically active binaries are observed as X-ray sources in globular clusters. We discuss the classification of these systems, and find that some presumed active binaries are brighter than expected. We discuss a new statistical method to determine from observations how the formation of X-ray sources depends on the number of stellar encounters and/or on the cluster mass. We show that cluster mass is not a proxy for the encounter number, and that optical identifications are essential in proving the presence of primordial binaries among the low-luminosity X-ray sources.


1984 ◽  
Vol 86 ◽  
pp. 59-66
Author(s):  
R. Mewe

With the 500 and 1000 l/mm transmission gratings aboard the European x-ray Observatory SATellite (EXOSAT) we have measured medium-resolution (Δλ 5 A at 100 A) spectra of some ten objects of various categories such as isolated white dwarfs, cool stars with convective mantles, cataclysmic variables (e.g. AM Her) and a high-luminosity X-ray source (Sco X-1).The Instrument configuration was mostly such that one low-energy telescope was used as a photometer, while the other telescope was used as a spectrometer with the 500 l/mm grating inserted.The white dwarf spectra were measured between about 60 and 300 A. They show a continuum with no clear evidence of aborption and emission lines except for the He II absorption edge at 227 A in the spectrum of Feige 24. For the cooler (28 000 K) white dwarf Sirius B the emission is peaked between about 100 and 160 A and limited to about 200 A. which can be expected from atmospheric model spectra of DA white dwarfs. The soft X-ray emission of the hotter (> 60 000 K) DA white dwarfs (HZ43. Feige 24) is also interpreted in terms of photospheric emission. In the HZ43 spectrum the absorption edge is apparently absent which sets a stringent upper limit to the abundance ratio He/H of about 10−5. On the other hand the spectrum of Feige 24 shows a dominant absorption edge, implying He/H > 10−3. Moreover, here the shape of the continuum may be indicative of a stratification of element abundances in the outer atmosphere.


1998 ◽  
Vol 188 ◽  
pp. 97-100
Author(s):  
M. Ishida ◽  
R. Fujimoto

Accreting magnetic white dwarfs are usually found as component stars in Magnetic Cataclysmic Variables (MCVs), in which a white dwarf with B = 105-8 G accepts mass from a late type (secondary) star via Roche Lobe overflow. Matter from the secondary is funneled by the magnetic field and concentrates on the magnetic pole(s) of the white dwarf. Since the accretion flow becomes highly supersonic, a standing shock wave is formed close to the white dwarf. The temperature of the plasma at the shock front reflects the gravitational potential and can be denoted as a function of the mass (M) and the radius (R) of the white dwarf as: Note here that the height of the shock is expected to be within 10% of the white dwarf radius, and hence neglected here.


2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Vojtěch Šimon

We review current results and perspectives of the photometric monitoring of the optical counterparts of X-ray sources of various kinds (binary X-ray sources (cataclysmic variables and low-mass X-ray binaries, supersoft X-ray sources, microquasars), gamma-ray bursts). We discuss the problems of the monitoring of the individual kinds of objects in the optical and X-ray passbands. We show the importance of multifilter monitoring to obtain a deeper understanding of the physical processes and to resolve between the individual emission mechanisms. We also show that there are brief, unique, and little understood phenomena which are very promising targets for the optical monitoring, for example, flares in intermediate polars.


Sign in / Sign up

Export Citation Format

Share Document