scholarly journals Dust Particles Near The Sun

1996 ◽  
Vol 150 ◽  
pp. 361-364
Author(s):  
L. I. Shestakova ◽  
L. V. Tambovtseva

AbstractThe orbital motion of interplanetary dust grains in the sublimation zone near the Sun has been considered for graphite and silicate. Calculations showed that dust grains with initial radii s = 0.5 - 5 μm can form regions of enhanced concentration. The inner corona is slightly enriched with particles s = 0.3 - 0.6 μm due to the departure of the evaporated grains onto highly elliptic orbits. However, they may be not recognized due to their small contribution to the total brightness along the line-of-sight compared with the background of the more typical Zodiacal particles. The astrosilicate dust grains do not form zones of enhanced concentration. Finally, particles with initial radii from 0.3 to 4 μm leave the Solar system and become β-meteoroids.

1994 ◽  
Vol 160 ◽  
pp. 367-380
Author(s):  
Eberhard Grün

In-situ measurements of micrometeoroids provide information on the spatial distribution of interplanetary dust and its dynamical properties. Pioneers 10 and 11, Galileo and Ulysses spaceprobes took measurements of interplanetary dust from 0.7 to 18 AU distance from the sun. Distinctly different populations of dust particles exist in the inner and outer solar system. In the inner solar system, out to about 3 AU, zodiacal dust particles are recognized by their scattered light, their thermal emission and by in-situ detection from spaceprobes. These particles orbit the sun on low inclination (i ≤ 30°) and moderate eccentricity (e ≤ 0.6) orbits. Their spatial density falls off with approximately the inverse of the solar distance. Dust particles on high inclination or even retrograde trajectories dominate the dust population outside about 3 AU. The dust detector on board the Ulysses spaceprobe identified interstellar dust sweeping through the outer solar system on hyperbolic trajectories. Within about 2 AU from Jupiter Ulysses discovered periodic streams of dust particles originating from within the jovian system.


1996 ◽  
Vol 150 ◽  
pp. 163-166
Author(s):  
Jer-Chyi Liou ◽  
Herbert A. Zook ◽  
Stanley F. Dermott

AbstractThe recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population at 1 AU. We have completed a numerical study of the orbital evolution of dust grains, of diameters 1 to 9 μm, that originate in the region of the Kuiper belt. Our results show that about 80% of the grains are ejected from the Solar System by the giant planets while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, these dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances to be captured by the Earth and makes them a possible source of the collected interplanetary dust particles (IDPs); in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth.When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains larger than about 9 μm appear likely to be collisionally shattered before they can evolve to the inner part of the Solar System. Therefore, Kuiper belt dust grains may not, as they are expected to be small, contribute significantly to the zodiacal light.


1980 ◽  
Vol 90 ◽  
pp. 319-320
Author(s):  
G. H. Schwehm

The equation of motion for interplanetary dust particles close to the Sun has been solved numerically taking into consideration the interaction with the radiation field of the Sun and the temperature distribution as a function of grain size and heliocentric distance for different materials.


2020 ◽  
Vol 643 ◽  
pp. A96
Author(s):  
Harald Krüger ◽  
Peter Strub ◽  
Max Sommer ◽  
Nicolas Altobelli ◽  
Hiroshi Kimura ◽  
...  

Context. Cometary meteoroid trails exist in the vicinity of comets, forming a fine structure of the interplanetary dust cloud. The trails consist predominantly of the largest cometary particles (with sizes of approximately 0.1 mm–1 cm), which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. In the 1970s, two Helios spacecraft were launched towards the inner Solar System. The spacecraft were equipped with in situ dust sensors which measured the distribution of interplanetary dust in the inner Solar System for the first time. Recently, when re-analysing the Helios data, a clustering of seven impacts was found, detected by Helios in a very narrow region of space at a true anomaly angle of 135 ± 1°, which the authors considered as potential cometary trail particles. However, at the time, this hypothesis could not be studied further. Aims. We re-analyse these candidate cometary trail particles in the Helios dust data to investigate the possibility that some or all of them indeed originate from cometary trails and we constrain their source comets. Methods. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new and recently published universal model for cometary meteoroid streams in the inner Solar System. We use IMEX to study the traverses of cometary trails made by Helios. Results. During ten revolutions around the Sun, the Helios spacecraft intersected 13 cometary trails. For the majority of these traverses the predicted dust fluxes are very low. In the narrow region of space where Helios detected the candidate dust particles, the spacecraft repeatedly traversed the trails of comets 45P/Honda-Mrkos-Pajdušáková and 72P/Denning-Fujikawa with relatively high predicted dust fluxes. The analysis of the detection times and particle impact directions shows that four detected particles are compatible with an origin from these two comets. By combining measurements and simulations we find a dust spatial density in these trails of approximately 10−8–10−7 m−3. Conclusions. The identification of potential cometary trail particles in the Helios data greatly benefited from the clustering of trail traverses in a rather narrow region of space. The in situ detection and analysis of meteoroid trail particles which can be traced back to their source bodies by spacecraft-based dust analysers provides a new opportunity for remote compositional analysis of comets and asteroids without the necessity to fly a spacecraft to or even land on those celestial bodies. This provides new science opportunities for future missions like DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science), Europa Clipper, and the Interstellar Mapping and Acceleration Probe.


1980 ◽  
Vol 90 ◽  
pp. 277-278
Author(s):  
E. Grün

The Helios 1 spacecraft was launched in December 1974 into a heliocentric orbit of 0.3 AU perihelion distance. It carries on board a micro-meteoroid experiment which contains two sensors with a total sensitive area of 121 cm2. The ecliptic sensor measures dust particles which have trajectories with elevations from −45° to +55° with respect to the ecliptic plane. The south sensor detects dust particles from −90° to −4°. The ecliptic sensor is covered by a thin film (3000 Å parylene coated with 750 Å aluminium) as protection against solar radiation. The other sensor is shielded by the spacecraft rim from direct sunlight and has an open aperture. Micrometeoroids are detected by the electric charge produced upon impact and the ions are mass analysed in a time-of-flight-spectrometer. During the first 6 orbits of Helios 1 around the sun the experiment registered a total of 168 meteoroids, 52 particles were detected by the ecliptic sensor and 116 particles by the south sensor. Most impacts on the ecliptic sensor were observed when it was pointing in the direction of motion of Helios (apex direction). In contrast to that the south sensor detected most impacts when it was facing in between the solar and antapex directions. Orbit analysis showed that the “apex” particles which are predominantly detected by the ecliptic sensor have eccentricities e < 0.4 or semimajor axes a < 0.5 AU. From comparison with corresponding data from the south sensor it is concluded that the average inclination of these particles is below 30°. The excess of impacts on the south sensor have orbit eccentricities e > 0.5 AU. β-meteoroids which leave the solar system on hyperbolic orbits are directly identified by the imbalance of outgoing (away from the sun) and ingoing particles. Mass analyses of the spectra showed that 40% of the observed spectra have the peak abundance above mass 35 amu which are preliminarily identified as iron meteoroids. 40% of the spectra have the peak abundance below mass 35 amu which correspond to chondritic composition. 20% of the spectra could not be identified in either class.


1989 ◽  
Vol 44 (10) ◽  
pp. 924-934 ◽  
Author(s):  
Edward R. D. Scott ◽  
Horton E. Newsom

Abstract We review the chemical and mineralogical properties of primitive meteorites and chemical data for the Sun, Comet Halley and interplanetary dust particles. Regardless of where meteorites formed, concentrations of rock-forming elements in solar nebular solids could not have varied simply with distance from the Sun. Thus compositional differences between neighboring planets and the chemical and mineralogical diversity of chondritic asteroids may have been caused by local variations in the compositions of planetesimals, rather than transport of planetesimals over large heliocentric dis­ tances. Chemical variations were partly caused by differential transport and preferential agglomer­ ation of various presolar and solar grains and aggregates, and the production from these aggregates of diverse types of chondrules, refractory inclusions and other chondritic components in brief, local high temperature events in the nebula. These processes were just as important in controlling solar system chemistry as effects due to changes in ambient nebular temperatures and pressures. Differ­ ences between the Fe/Si ratios of the Sun, CI chondrites, interplanetary dust particles and Comet Halley suggest that planetesimals in the outer solar system had diverse relative concentrations of rock-forming elements.


1995 ◽  
Vol 10 ◽  
pp. 351-392 ◽  
Author(s):  
Martha S. Hanner

Study of the dust in circumstellar disks around young stars is currently an extremely active area in astronomy. There is little doubt that accretion disks are a natural part of protostellar evolution. Much recent observational and theoretical work is giving us a clearer picture of the physical conditions in dust disks and their evolutionary progression. IRAS observations revealed that many main-sequence stars, such as p Pictoris, have circumstellar disks. But whether these disks are related to planetary formation is not yet understood.A portion of the dust in disks around young stars ultimately may be incorporated into planetary systems. Thus, study of the dust in our own solar system complements the remote sensing of protostellar regions and aids in reconstructing the evolutionary history of the dust. Since comets formed in the cold outer regions of the solar nebula, they may contain intact interstellar grains. As the comets lose material during passage through the warm inner solar system, some of these grains will be released into interplanetary space. Technical advances now allow analysis of individual micrometer or smaller grains in interplanetary dust particles and primitive meteorite samples. Isotopic anomalies and patterns of crystal growth in these particles are yielding tantalizing clues about the interstellar material incorporated into these solar system samples.


2020 ◽  
Vol 216 (4) ◽  
Author(s):  
Tomohiro Usui ◽  
Ken-ichi Bajo ◽  
Wataru Fujiya ◽  
Yoshihiro Furukawa ◽  
Mizuho Koike ◽  
...  

Abstract Phobos and Deimos occupy unique positions both scientifically and programmatically on the road to the exploration of the solar system. Japan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). The MMX spacecraft is scheduled to be launched in 2024, orbit both Phobos and Deimos (multiple flybys), and retrieve and return >10 g of Phobos regolith back to Earth in 2029. The Phobos regolith represents a mixture of endogenous Phobos building blocks and exogenous materials that contain solar system projectiles (e.g., interplanetary dust particles and coarser materials) and ejecta from Mars and Deimos. Under the condition that the representativeness of the sampling site(s) is guaranteed by remote sensing observations in the geologic context of Phobos, laboratory analysis (e.g., mineralogy, bulk composition, O-Cr-Ti isotopic systematics, and radiometric dating) of the returned sample will provide crucial information about the moon’s origin: capture of an asteroid or in-situ formation by a giant impact. If Phobos proves to be a captured object, isotopic compositions of volatile elements (e.g., D/H, 13C/12C, 15N/14N) in inorganic and organic materials will shed light on both organic-mineral-water/ice interactions in a primitive rocky body originally formed in the outer solar system and the delivery process of water and organics into the inner rocky planets.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 426-426
Author(s):  
Scott Messenger ◽  
K. Nakamura-Messenger

AbstractInterplanetary dust particles (IDPs) collected in the Earths stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01-1% of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present an overview of the current state of understanding of the properties and origins of organic matter in primitive IDPs.


2008 ◽  
Vol 4 (S251) ◽  
pp. 341-342
Author(s):  
Ernst Zinner

AbstractUltimately, all of the solids in the Solar System, including ourselves, consist of elements that were made in stars by stellar nucelosynthesis. However, most of the material from many different stellar sources that went into the making of the Solar System was thoroughly mixed, obliterating any information about its origin. An exception are tiny grains of preserved stardust found in primitive meteorites, micrometeorites, and interplanetary dust particles. These μm- and sub-μm-sized presolar grains are recognized as stardust by their isotopic compositions, which are completely different from those of the Solar System. They condensed in outflows from late-type stars and in SN ejecta and were included in meteorites, from which they can be isolated and studied for their isotopic compositions in the laboratory. Thus these grains constitute a link between us and our stellar ancestors. They provide new information on stellar evolution, nucleosynthesis, mixing processes in asymptotic giant branch (AGB) stars and supernovae, and galactic chemical evolution. Red giants, AGB stars, Type II supernovae, and possibly novae have been identified as stellar sources of the grains. Stardust phases identified so far include silicates, oxides such as corundum, spinel, and hibonite, graphite, silicon carbide, silicon nitride, titanium carbide, and Fe-Ni metal.


Sign in / Sign up

Export Citation Format

Share Document