scholarly journals Characteristics of a CW HF chemical laser calculated from a simplified two-dimensional model

1986 ◽  
Vol 4 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Zhou Xuehua ◽  
Chen Liyin ◽  
Chen Haitao

A two-dimensional simplified model of an HF chemical laser is introduced. Using an implicit finite difference scheme, the solution of two adjacent parallel streams with diffusion mixing and chemical reaction is generated. A contour of the mixing and reaction boundary is obtained without presupposition. The distribution of the HF(u) concentrations, gas temperature and the optical small signal gain (αu, J) on the flowing plane (X, Y) are presented. Compared with the solution solved directly from a set of Navier–Stokes equations, the results of these two methods agree with each other qualitatively. The influences of the different velocity, temperature (T0) and composition of the two streams on the small signal gain after the nozzle exit are investigated. It is interesting that for larger J with a fixed u, the peaks of αu, J—T0 profiles move towards higher T0. The computing method is simple and only a short computing time is needed.

2019 ◽  
Vol 89 (1) ◽  
pp. 42
Author(s):  
Т.А. Лапушкина ◽  
А.В. Ерофеев ◽  
О.А. Азарова ◽  
О.В. Кравченко

AbstractThe interaction of a plane shock wave ( M = 5) with an ionized plasma region formed before the arrival of a shock wave by a low-current glow gas discharge is considered experimentally and numerically. In the experiment, schlieren images of a moving shock-wave structure resulting from the interaction and consisting of two discontinuities, convex in the direction of motion of the initial wave, are obtained. The propagation of a shock wave over the region of energetic impact is simulated on the basis of the two-dimensional Riemann problem of decay of an arbitrary discontinuity with allowance for the influence of horizontal walls. The systems of Euler and Navier–Stokes equations are solved numerically. The non-equilibrium of the processes in the gas-discharge region was simulated by an effective adiabatic index γ. Based on the calculations performed for equilibrium air (γ = 1.4) and for an ionized nonequilibrium gas medium (γ = 1.2), it is shown that the experimentally observed discontinuities can be interpreted as elements of the solution of the two-dimensional problem of decay of a discontinuity: a shock wave followed by a contact discontinuity. It is shown that a variation in γ affects the shape of the fronts and velocities of the discontinuities obtained. Good agreement is obtained between the experimental and calculated images of density and velocities of the discontinuities at a residual gas temperature in the gas discharge region of 373 K.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


2004 ◽  
Vol 126 (5) ◽  
pp. 735-742 ◽  
Author(s):  
Kwang-Yong Kim ◽  
Seoung-Jin Seo

In this paper, the response surface method using a three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved-blade centrifugal fan is described. For the numerical analysis, Reynolds-averaged Navier-Stokes equations with the standard k-ε turbulence model are discretized with finite volume approximations. The SIMPLEC algorithm is used as a velocity–pressure correction procedure. In order to reduce the huge computing time due to a large number of blades in forward-curved-blade centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Four design variables, i.e., location of cutoff, radius of cutoff, expansion angle of scroll, and width of impeller, were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and a linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. Effects of the relative size of the inactive zone at the exit of impeller and momentum fluxes of the flow in scroll on efficiency were further discussed. It was found that the optimization process provides a reliable design of this kind of fan with reasonable computing time.


Sign in / Sign up

Export Citation Format

Share Document