scholarly journals Experimental and numerical evolution studies for 2D perturbations of the interface accelerated by shock waves

1997 ◽  
Vol 15 (1) ◽  
pp. 101-114 ◽  
Author(s):  
V.V. Bashurov ◽  
Yu.A. Bondarenko ◽  
E.V. Gubkov ◽  
V.I. Dudin ◽  
E.E. Meshkov ◽  
...  

In this article, the results of experimental and numerical studies of the behavior of perturbed interface between air and helium are presented. The interface is initially accelerated by the incident shock wave coming from air to helium and then decelerated by a series of reflected shock waves. Two types of initial interface perturbations like “saw” and “step” are considered.

Author(s):  
W. A. Woods

The paper first explains the importance of the reflection of shock waves in the design of certain chemical plant. The theory of the reflection of shock waves is also discussed in the first part of the paper. It is shown that when a shock wave travelling along a pipe containing stationary gas reaches the outlet end of the pipe there may be ( a) a reflected expansion wave, ( b) a reflected shock wave, ( c) a reflected sound wave, ( d) no reflected wave at all, ( e) a standing shock wave situated at the end of the pipe, depending upon the strength of the incident shock wave and the amount of blockage present at the outlet end of the pipe. The conditions for each kind of reflection are determined, and in the case of the reflected shock wave region the strengths and speeds of the reflected shock waves are established throughout the region and the results are presented graphically. In the second part of the paper the results are given of experiments carried out on a shock tube fitted with various kinds of deflector plates. The experiments were performed to study the reflection of shock waves from the deflector plates by measuring pressure/time indicator diagrams near the outlet end of the pipe. The indicator diagrams revealed the approximate pressure amplitudes of the incident and reflected shock waves and also the wave travel times for the shock waves. This information was used in conjunction with the charts given in the first part of the paper to establish the deflector geometry and spacing needed in order to avoid the occurrence of a reflected shock wave.


1976 ◽  
Vol 75 (2) ◽  
pp. 373-383 ◽  
Author(s):  
John C. Cummings

The flow field produced by a shock wave reflecting from a helium gas-liquid interface was investigated using a cryogenic shock tube. Incident and reflected shock waves were observed in the gas; transmitted first- and second-sound shocks were observed in the liquid. Wave diagrams are constructed to compare the data with theoretical wave trajectories. Qualitative agreement between data and theory is shown. Quantitative differences between data and theory indicate a need for further analysis of both the gas-liquid interface and the propagation of nonlinear waves in liquid helium.This work was a first step in the experimental investigation of a complex non-equilibrium state. The results demonstrate clearly the usefulness of the cryogenic shock tube as a research tool. The well-controlled jump in temperature and pressure across the incident shock wave provides unique initial conditions for the study of dynamic phenomena in superfluid helium.


Many experiments in various gases have now been performed on regular and Mach reflection of oblique shock waves in pseudostationary flow. Experimental agreement with the analytical boundaries for such reflec­tions with two- and three-shock theories is reasonable but not precise enough over the entire range of incident shock-wave Mach numbers ( M s ) and compression wedge angle ( θ W ) used in the experiments. In order to improve the agreement, the assumptions and criteria employed in the analysis were critically examined by the use of the experimental data for nitrogen (N 2 ), argon (Ar), carbon-dioxide (CO 2 ), air and sulphurhexa-fluoride (SF 6 ). The assumptions regarding the excitation of the internal degrees of freedom were evaluated based on a relation between the relaxation lengths and a characteristic length of the flow. The ranges in which the frozen-gas and vibrational-equilibrium-gas assumptions can be applied were verified by comparing the experimental and numerical values of δ, the angle between the incident and the reflected shock waves. The deviations of the experimental orientation of the Mach stem at the triple point from a line perpendicular to the wedge surface were considered. A new criterion for the transition from single-Mach to complex-Mach reflection improved the agreement with experiments in the ( M S , θ W )-transition-boundary map. The effects of the shock-induced boundary layer on the wedge surface on the reflected-wave angle and the persistence of regular reflection into the Mach reflection region (‘von Neumann paradox’) were evaluated.


2018 ◽  
Vol 209 ◽  
pp. 00003
Author(s):  
Nickolay Smirnov ◽  
Valeriy Nikitin

The paper presents results of numerical and experimental investigation of mixture ignition and detonation onset in shock wave reflected from inside a wedge. Contrary to existing opinion of shock wave focusing being the mechanism for detonation onset in reflection from a wedge or cone, it was demonstrated that along with the main scenario there exists a transient one, under which focusing causes ignition and successive flame acceleration bringing to detonation onset far behind the reflected shock wave. Several different flow scenarios manifest in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes. Comparison of numerical and experimental results made it possible to validate the developed 3-D transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen – air mixtures.


Author(s):  
A. Kiverin ◽  
◽  
I. Yakovenko ◽  

The paper analyzes the gasdynamic evolution of the test mixture flow in the shock tube at the stage prior to reaction start. The numerical analysis clearly shows that the incepience of reaction kernels is associated with the specific features of flow development in the boundary layer behind an incident shock wave. It is shown that similar to the processes in the gas flow near a solid surface, the gasdynamic instability arises and develops in the flow behind a shock wave. The linear stage of instability development determines the formation of roll-up vortices at a certain distance behind the shock front. Further, at the nonlinear stage, these roll-up vortices transform in more complex structures that diffuse into the bulk flow. Evolution of vortices causes temperature redistribution on the scales of the boundary layer. On the one hand, there is a certain heating due to the kinetic energy dissipation. On the other hand, there are heat losses to the wall. As a result, the temperature field near the wall becomes nonuniform. The reflected shock amplifies temperature perturbations when interacts with the developed boundary layer. This mechanism determines the formation of hot kernels in which the reaction starts. So, the localized sites of exothermal reaction are arising providing conditions for reaction wave formation and propagation in the precompressed test gas.


1961 ◽  
Vol 16 (3) ◽  
pp. 426-430 ◽  
Author(s):  
Carl-Johan Clemedson ◽  
Arne Jönsson

Anesthetized rabbits were exposed to air shock waves in a detonation chamber. The pressure wave patterns were recorded by means of a small lead zirconate titanate pressure transducer in the following parts of the body: at and under the skin of the side facing the charge, in the pleural sac and in the lung of that side, in the right and left ventricle of the heart, in the lung and in the pleural sac on the side opposite the charge, under the skin of that side, in the stomach, and in the skull between the bone and the brain. When the incident shock wave is propagated through the body the very steep shock front is converted so that the ascending limb of the pressure peak is much less steep, with a duration up to several hundred microseconds. The longest periods of pressure rise were found in the heart ventricles and stomach. The amplitude of the pressure curve generally diminishes as the wave passes through the body. The changes of the original shock wave are due probably in great part to the inhomogeneous structure of the animal body. Note: (With the Technical Assistance of A.-B. Sundqvist) Submitted on October 24, 1960


2009 ◽  
Vol 635 ◽  
pp. 47-74 ◽  
Author(s):  
R. A. HUMBLE ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is investigated using particle image velocimetry in combination with data processing using the proper orthogonal decomposition, to obtain an instantaneous and statistical description of the unsteady flow organization. The global structure of the interaction is observed to vary considerably in time. Although reversed flow is often measured instantaneously, on average no reversed flow is observed. On an instantaneous basis, the interaction exhibits a multi-layered structure, characterized by a relatively high-velocity outer region and low-velocity inner region. Discrete vortical structures are prevalent along their interface, which create an intermittent fluid exchange as they propagate downstream. A statistical analysis suggests that the instantaneous fullness of the incoming boundary layer velocity profile is (weakly) correlated with the size of the separation bubble and position of the reflected shock wave. The eigenmodes show an energetic association between velocity fluctuations within the incoming boundary layer, separated flow region and across the reflected shock wave, and portray subspace features that represent the phenomenology observed within the instantaneous realizations.


1961 ◽  
Vol 83 (4) ◽  
pp. 663-670 ◽  
Author(s):  
George Rudinger

Previous studies of shock reflection from open-ended duct configurations indicate that a steady discharge is not instantaneously formed and that the effects of this lag may occasionally be important. A theory is available which satisfactorily describes the lag effects in subcritical flow, but its validity for supercritical flow has not previously been verified. Shock-tube experiments are therefore carried out to study the lag effects in supercritical flow from a sharp-edged orifice. The incident shock wave either modifies an initial supercritical discharge, or establishes such a discharge with the gas initially being at rest. Schlieren photographs show a violent transition of the flow downstream of the orifice that lasts several milliseconds. Pressure records taken inside the duct indicate a small, but distinct, pressure rise that also lasts for several milliseconds following the passage of the reflected shock wave. It is shown that this apparent agreement of the transition times is accidental. A method is described to evaluate the effect of boundary-layer growth on the pressure behind the reflected shock wave, and the results indicate that the entire observed pressure rise is accounted for by this effect. Consequently, flow adjustment in the orifice may be considered as instantaneous for all practical purposes.


The flow that results when a shock wave in a dusty gas is reflected from a rigid wall is studied theoretically. By applying an idealized equilibrium gas analysis, it is shown that there are three types of shock reflection. The incident shock wave and the reflected shock wave are partly dispersed if the incident shock is strong the former is partly dispersed but the latter is fully dispersed if the incident shock is of intermediate strength and both of them are fully dispersed if the incident shock is weak. The equations of motion are also solved numerically with a modified random-choice method involving an operator splitting technique to study the time-dependent non-equilibrium flow. The results demonstrate the details of the formation of the reflected shock wave for the three types described.


1968 ◽  
Vol 31 (3) ◽  
pp. 529-546 ◽  
Author(s):  
M. G. Briscoe ◽  
A. A. Kovitz

The rate of damping of perturbations on a shock wave reflected from a perturbed flat wall was measured in a shock tube. Incident shock wave Mach numbers of 1·45 and 1·09 in air together with sinusoidal and Gaussian wall perturbations were employed. These measurements were compared with a modified form of a linearized theory due to Zaidel (1960). The linearization was performed about the basic solution of a plane shock wave reflected normally from a flat wall.The rate of decay and the frequency and phase of oscillations agreed very well with the theoretical predictions; the amplitudes of the oscillations were some-what larger than predicted. The reflected shock shape was initially in good agreement with theory, but higher frequency perturbations on the reflected shock front caused deviations from the predicted shape after the shock front had travelled about one wall-wavelength away from the wall.The generally satisfactory agreement between theory and experiment supports the use of linearized analysis in predicting shock wave stability.


Sign in / Sign up

Export Citation Format

Share Document