scholarly journals Optimum laser parameters for 1D radiation pressure acceleration

2015 ◽  
Vol 33 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Peter Schmidt ◽  
Oliver Boine-Frankenheim ◽  
Peter Mulser

AbstractLaser ion acceleration (Wilks et al., 2001; Passoni et al., 2010) has become an interesting field of research in the past years. Several experiments, such as LIGHT (Schollmeier et al., 2008; Bagnoud et al., 2010; Busold et al., 2013; 2014a; 2014b) are performed worldwide. High intense, pulsed laser beams are used to generate and accelerate a plasma. For higher laser intensities (>1021 W cm−1), simulations (Esirkepov et al., 2004; Macchi et al., 2005; 2009; 2010; Robinson et al., 2008; Rykovanov et al., 2008; Henig et al., 2009; Schlegel et al., 2009; Shoucri et al., 2011; 2013; 2014; Kar et al., 2012; Korzhimanov et al., 2012; Shoucri, 2012) have revealed a new acceleration mechanism: The Radiation Pressure Acceleration. The entire foil target is accelerated by the radiation pressure of the laser pulse. Ideally, a sharp peak spectrum is generated, with energies up to GeV and nearly solid body density. This work faces on a detailed analysis of the acceleration mechanism in order to develop the optimum laser- and target parameters for the process. The analysis is supported by one-dimensional PIC simulations, using the commercial code VSim© Tech-X (2015).

1986 ◽  
Vol 108 (3) ◽  
pp. 597-601 ◽  
Author(s):  
M. F. Modest ◽  
H. Abakians

Heat conduction in a moving semi-infinite medium subject to laser irradiation is considered. The body of knowledge of exact analytical solutions for Gaussian laser irradiation is expanded to include pulsed lasers, and laser beams that penetrate into the medium with exponential decay. For applications with complicated geometries (laser melting and evaporation), a simple integral method, based on one-dimensional diffusion, is presented, and its range of validity determined.


1983 ◽  
Vol 61 (10) ◽  
pp. 1382-1385 ◽  
Author(s):  
R. Marchand ◽  
C. E. Capjack ◽  
C. R. James

A simple method is presented for graphically comparing results from one-dimensional (plane wave) and two-dimensional calculations of a laser pulse compression by Raman backscattering. The effects of diffraction, generation of the second (or higher) Stokes pulse, and linear damping of the laser beams are assumed to be negligible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Els Weinans ◽  
Rick Quax ◽  
Egbert H. van Nes ◽  
Ingrid A. van de Leemput

AbstractVarious complex systems, such as the climate, ecosystems, and physical and mental health can show large shifts in response to small changes in their environment. These ‘tipping points’ are notoriously hard to predict based on trends. However, in the past 20 years several indicators pointing to a loss of resilience have been developed. These indicators use fluctuations in time series to detect critical slowing down preceding a tipping point. Most of the existing indicators are based on models of one-dimensional systems. However, complex systems generally consist of multiple interacting entities. Moreover, because of technological developments and wearables, multivariate time series are becoming increasingly available in different fields of science. In order to apply the framework of resilience indicators to multivariate time series, various extensions have been proposed. Not all multivariate indicators have been tested for the same types of systems and therefore a systematic comparison between the methods is lacking. Here, we evaluate the performance of the different multivariate indicators of resilience loss in different scenarios. We show that there is not one method outperforming the others. Instead, which method is best to use depends on the type of scenario the system is subject to. We propose a set of guidelines to help future users choose which multivariate indicator of resilience is best to use for their particular system.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


2005 ◽  
Vol 35 (10) ◽  
pp. 953-958 ◽  
Author(s):  
Roman V Volkov ◽  
A A Vorobiev ◽  
Vyacheslav M Gordienko ◽  
M S Dzhidzhoev ◽  
I M Lachko ◽  
...  

2007 ◽  
Vol 21 (03n04) ◽  
pp. 642-646 ◽  
Author(s):  
A. ABUDUREXITI ◽  
Y. MIKADO ◽  
T. OKADA

Particle-in-Cell (PIC) simulations of fast particles produced by a short laser pulse with duration of 40 fs and an intensity of 1020W/cm2 interacting with a foil target are performed. The experimental process is numerically simulated by considering a triangular concave target illuminated by an ultraintense laser. We have demonstrated increased acceleration and higher proton energies for triangular concave targets. We also determined the optimum target plasma conditions for maximum proton acceleration. The results indicated that a change in the plasma target shape directly affects the degree of contraction accelerated proton bunch.


1997 ◽  
Vol 39 (12) ◽  
pp. 1985-1988
Author(s):  
S. V. Vintsents ◽  
S. G. Dmitriev ◽  
K. I. Spiridonov

Sign in / Sign up

Export Citation Format

Share Document