scholarly journals Terahertz radiation from plasma filament generated by two-color laser gas–plasma interaction

2015 ◽  
Vol 33 (3) ◽  
pp. 473-479 ◽  
Author(s):  
K. K. Magesh Kumar ◽  
M. Kumar ◽  
T. Yuan ◽  
Z. M. Sheng ◽  
M. Chen

AbstractWe develop a theoretical model for terahertz (THz) radiation generation, when an intense short laser pulse (ω1, k1) is mixed with its frequency shifted second harmonic (ω2, k2), where ω2 = 2ω1 + ωT and ωT is in the THz range in the plasma. The lasers exert a ponderomotive force on the electrons and drive density perturbations at (2ω1, 2k1) and (ω2 − ω1, k2 − k1). These density perturbations couple with the oscillatory velocities of the electron due to the lasers and produce a nonlinear current at (ω2 − 2ω1, k2 − 2k1). This current acts as an antenna to produce the THz radiation. The THz power depends upon the square of plasma density and $I_1^2 {I_2}$, where I1 and I2 are the intensities of fundamental and second harmonic laser. The radiation is mainly along the forward direction. Two-dimensional particle-in-cell simulations are used to study the near-field radiation properties.

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2097-2105
Author(s):  
Xiaozhuo Qi ◽  
Tsz Wing Lo ◽  
Di Liu ◽  
Lantian Feng ◽  
Yang Chen ◽  
...  

AbstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)–alumina (Al2O3)–gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity’s effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.


2013 ◽  
Vol 718-720 ◽  
pp. 1792-1796
Author(s):  
Zhong Qun Li ◽  
Kai Xie ◽  
Ying Hao Ye ◽  
Rong Bin Guo ◽  
Xu Fei Wang

A non-contact testing method is proposed for encapsulation treated or insulation coated switching power supplies, which is implemented by reconstructing the pulse width modulation (PWM) signal of switching converters from the near field radiation of magnetic components. The radiation pattern of a buck converter is investigated, and the magnetic field sensing probe and PWM signal reconstruction circuit are also illustrated. The reconstruction testing is carried out on a buck converter; the duty cycle error of the reconstructed PWM signal is less than 0.2%, which validates the proposed method.


2007 ◽  
Vol 20 (6) ◽  
pp. 597-604
Author(s):  
Xue-feng Shang ◽  
Qi-ming Liu ◽  
Hai-ming Zhang ◽  
Xiao-fei Chen

2009 ◽  
Vol 99 (1-2) ◽  
pp. 67-74 ◽  
Author(s):  
E. Öğüt ◽  
G. Kızıltaş ◽  
K. Şendur

Sign in / Sign up

Export Citation Format

Share Document