The effects of parameter variation on the gaits of passive walking models: simulations and experiments

Robotica ◽  
2009 ◽  
Vol 27 (4) ◽  
pp. 511-528 ◽  
Author(s):  
Liu Ning ◽  
Li Junfeng ◽  
Wang Tianshu

SUMMARYWe have made a systematic study of the gait of a straight leg planar passive walking model through simulations and experiments. Three normalised parameters, which represent the foot radius, the position of the mass centre and the moment of inertia, are used to characterise the walking model.In the simulation, we have obtained the fixed points and the basins of attraction of the walking models with different parameter combinations by the aid of the cell mapping method. With the results of fixed points, we investigated the effects of parameter variations on the gait descriptors, including step length, period, average speed and energy inefficiency. A model that has a large basin of attraction has been obtained, and it can start walking far from its fixed point. However, the size of the basin of attraction is not a good measurement of robustness. Thus, we proposed floors with random slope angles or stairs with random heights to test robustness. Five hundred times of simulations with 100 non-dimensional time units were implemented for each parameter combination. The times that the walker failed to arrive at the end were recorded. The simulation results showed that the model with a larger foot radius and higher position of mass centre has a lower possibility of falling on uneven floors. A large moment of inertia is helpful for walking on a random slope angle floor, while low values of moment of inertia are good for navigating random stairs.Prototype experiments have validated the simulation results, which showed that models with larger feet have a longer step length and high speed. However, period differences were difficult to obtain in the experiments since the differences were very small. We have tested the sensitivity with the initial conditions of the models with different foot radii on a flat floor, and have also tested the robustness of the models on a floor with random slope angles. The times that the model reached the end of the floor were recorded. The experimental results showed that a large foot radius is good for improving the basin of attraction and robustness on uneven floors. Finally, the exceptions of the experiment are explained.

2014 ◽  
Vol 36 (3) ◽  
pp. 781-793 ◽  
Author(s):  
ALASTAIR FLETCHER ◽  
DANIEL A. NICKS

We investigate the rate of convergence of the iterates of an $n$-dimensional quasiregular mapping within the basin of attraction of a fixed point of high local index. A key tool is a refinement of a result that gives bounds on the distortion of the image of a small spherical shell. This result also has applications to the rate of growth of quasiregular mappings of polynomial type, and to the rate at which the iterates of such maps can escape to infinity.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Juan Neirotti

AbstractWe consider the process of opinion formation, in a society where there is a set of rules B that indicates whether a social instance is acceptable. Public opinion is formed by the integration of the voters’ attitudes which can be either conservative (mostly in agreement with B) or liberal (mostly in disagreement with B and in agreement with peer voters). These attitudes are represented by stable fixed points in the phase space of the system. In this article we study the properties of a perturbative term, mimicking the effects of a publicity campaign, that pushes the system from the basin of attraction of the liberal fixed point into the basin of the conservative point, when both fixed points are equally likely.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 865 ◽  
Author(s):  
Julian Gonzalez-Ayala ◽  
Moises Santillán ◽  
Maria Santos ◽  
Antonio Calvo Hernández ◽  
José Mateos Roco

Local stability of maximum power and maximum compromise (Omega) operation regimes dynamic evolution for a low-dissipation heat engine is analyzed. The thermodynamic behavior of trajectories to the stationary state, after perturbing the operation regime, display a trade-off between stability, entropy production, efficiency and power output. This allows considering stability and optimization as connected pieces of a single phenomenon. Trajectories inside the basin of attraction display the smallest entropy drops. Additionally, it was found that time constraints, related with irreversible and endoreversible behaviors, influence the thermodynamic evolution of relaxation trajectories. The behavior of the evolution in terms of the symmetries of the model and the applied thermal gradients was analyzed.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart which can move in one dimension. There is stick slip friction between the cart and the track on which it moves. Using two different models for this friction we design feedback controllers to stabilize the pendulum in the upright position. We show that controllers based on either friction model give better performance than one based on a simple viscous friction model. We then study the effect of time delay in this controller, by calculating the critical time delay where the system loses stability and comparing the calculated value with experimental data. Both models lead to controllers with similar robustness with respect to delay. Using numerical simulations, we show that the effective critical time delay of the experiment is much less than the calculated theoretical value because the basin of attraction of the stable equilibrium point is very small.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Christopher M. DiBiasio ◽  
Martin L. Culpepper ◽  
Robert Panas ◽  
Larry L. Howell ◽  
Spencer P. Magleby

We report on the accuracy of the pseudo-rigid-body model (PRBM) in predicting the behavior of a nanoscale parallel-guiding mechanism (nPGM) that uses two single-walled (5,5) carbon nanotubes (CNTs) as the flexural guiding elements. The nPGM has two regions of behavior: region 1 is governed by the bulk deformation of the nanotubes, and region 2 is characterized by hingelike flexing of four “kinks” that occur due to buckling of the nanotube walls. PRBM parameters for (5,5) CNTs are proposed. Molecular simulation results of region 1 behavior match PRBM predictions of (1) kinematic behavior with less than 7.3% error and (2) elastomechanic behavior with less than 5.7% error. Although region 1 is of more interest because of its well-defined and stable nature, region 2 motion is also investigated. We show that the PRBM parameters are dependent on the selection of the effective tube thickness and moment of inertia, the lesson being that designers must take care to consider the thickness and moment of inertia values when deriving PRBM constants.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 657-665 ◽  
Author(s):  
Yong Hu ◽  
Gangfeng Yan ◽  
Zhiyun Lin

SUMMARYThis paper investigates the stable-running problem of a planar underactuated biped robot, which has two springy telescopic legs and one actuated joint in the hip. After modeling the robot as a hybrid system with multiple continuous state spaces, a natural passive limit cycle, which preserves the system energy at touchdown, is found using the method of Poincaré shooting. It is then checked that the passive limit cycle is not stable. To stabilize the passive limit cycle, an event-based feedback control law is proposed, and also to enlarge the basin of attraction, an additive passivity-based control term is introduced only in the stance phase. The validity of our control strategies is illustrated by a series of numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document