Robot-assisted MRI-guided prostatic interventions

Robotica ◽  
2009 ◽  
Vol 28 (2) ◽  
pp. 215-234 ◽  
Author(s):  
Andrew A. Goldenberg ◽  
John Trachtenberg ◽  
Yang Yi ◽  
Robert Weersink ◽  
Marshall S. Sussman ◽  
...  

SUMMARYThis paper reports on recent progress made toward the development of a new magnetic resonance imaging (MRI)-compatible robot-assisted surgical system for closed-bore image-guided prostatic interventions: thermal ablation, radioactive seed implants (brachytherapy), and biopsy. Each type of intervention will be performed with a different image-guided, robot-based surgical tool mounted on the same MRI-guided robot through a modular trocar. The first stage of this development addresses only laser-based focal ablation. The robot mechanical structure, modular surgical trocar, control architecture, and current stage of performance evaluation in the MRI environment are presented. The robot actuators are ultrasonic motors. A methodology of using such motors in the MRI environment is presented. The robot prototype with surgical ablation tool is undergoing tests on phantoms in the MRI bore. The tests cover MRI compatibility, image visualization, robot accuracy, and thermal mapping. To date, (i) the images are artifact- and noise-free for certain scanning pulse sequences; (ii) the robot tip positioning error is less than 1.2 mm even at positions closer than 0.3 m from the MRI isocenter; (iii) penetration toward the target is image-monitored in near-real time; and (iv) thermal ablation and temperature mapping are achieved using a laser delivered on an optical fiber and MRI, respectively.

Author(s):  
G P Bijvoet ◽  
S M Chaldoupi ◽  
E Bidar ◽  
R J Holtackers ◽  
J G L M Luermans ◽  
...  

Abstract Background Surgical epicardial AF ablation can be performed as a stand-alone (thoracoscopic) procedure or concomitant to other cardiac surgery. In hybrid AF ablation thoracoscopic surgical epicardial ablation is combined with a percutaneous endocardial ablation. The Medtronic Gemini-S clamp is a surgical tool that uses irrigated bipolar biparietal RF energy applied with two clamp lesions that overlap to create one epicardial box lesion including the posterior LA wall and the pulmonary veins. Case summary We describe three patients with therapy-refractory persistent AF and different stages of atrial remodelling in whom the Medtronic Cardioblate Gemini-S Irrigated RF Surgical Ablation System was used for hybrid AF ablation. Acute endocardial validation at the end of the hybrid ablation revealed a complete box lesion in all three cases. At 2-year follow-up, two out of three patients had recurrence of atrial arrhythmias. Invasive electro-anatomical mapping confirmed persistence of the box lesion, and the mechanism of arrhythmia recurrence in both patients was unrelated to posterior left atrium or the pulmonary veins. The third patient has been without arrhythmia symptoms since the ablation procedure. A 3D late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) illustrates the ablation scar non-invasively in two cases. Discussion Thoracoscopic biparietal RF AF ablation with the Medtronic Cardioblate Gemini-S Irrigated RF Surgical Ablation System results in permanent transmural scar formation, irrespective of the stage of atrial remodelling, as shown in this small population by means of multimodality scar evaluation.


2011 ◽  
Vol 121-126 ◽  
pp. 2253-2257
Author(s):  
Yong De Zhang ◽  
Hai Yan Du ◽  
Li Wei Geng ◽  
Yu Qin Li ◽  
Hong Xia Zhang ◽  
...  

MRI-compatible surgical robot technology is one of the most effective ways to improve the real-time image-guided surgical biopsy. In MRI environment, the robot design is facing the problems of high magnetic field and limited workspace. A pneumatic-driven MRI-guided intervention robot was designed for chest and abdomen surgical biopsy. Based on compatibility and workspace analysis, the specific structure design of the robot was carried out. Then robot coordinate system was established using D-H method and the kinematics analysis was conducted.


2020 ◽  
Vol 6 (3) ◽  
pp. 123-126
Author(s):  
Michael Unger ◽  
Johann Berger ◽  
Bjoern Gerold ◽  
Andreas Melzer

AbstractHigh intensity focused ultrasound is used as a surgical tool to treat completely non-invasively several diseases. Examples of clinical applications are uterine fibroids, prostate cancer, thyroid nodules, and varicose veins. Precise targeting is key for improving the treatment outcome. A method for an automated, robot-assisted tracking system was developed and evaluated. A wireless ultrasound scanner was used to acquire images of the target, in this case, a blood vessel. The active contour approach by Chan and Vese was used to segment and track while moving the scanner along the target structure with a collaborative robotic arm. The performance was assessed using a custom made Agar phantom. The mean tracking error, which is defined as the remaining distance of the lesion to the images’ centre line, was 0.27 mm ± 0.18 mm.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 640
Author(s):  
Linshuai Zhang ◽  
Shuoxin Gu ◽  
Shuxiang Guo ◽  
Takashi Tamiya

A teleoperated robotic catheter operating system is a solution to avoid occupational hazards caused by repeated exposure radiation of the surgeon to X-ray during the endovascular procedures. However, inadequate force feedback and collision detection while teleoperating surgical tools elevate the risk of endovascular procedures. Moreover, surgeons cannot control the force of the catheter/guidewire within a proper range, and thus the risk of blood vessel damage will increase. In this paper, a magnetorheological fluid (MR)-based robot-assisted catheter/guidewire surgery system has been developed, which uses the surgeon’s natural manipulation skills acquired through experience and uses haptic cues to generate collision detection to ensure surgical safety. We present tests for the performance evaluation regarding the teleoperation, the force measurement, and the collision detection with haptic cues. Results show that the system can track the desired position of the surgical tool and detect the relevant force event at the catheter. In addition, this method can more readily enable surgeons to distinguish whether the proximal force exceeds or meets the safety threshold of blood vessels.


Author(s):  
Ghassan Hamarneh ◽  
Alborz Amir-Khalili ◽  
Masoud S. Nosrati ◽  
Ivan Figueroa ◽  
Jeremy Kawahara ◽  
...  

Author(s):  
Flavia de Gennaro ◽  
Roberto Iezzi ◽  
Gionata Spagnoletti ◽  
Maria Paola Salerno ◽  
Jacopo Romagnoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document