Experimental tests of a sliding mode controller for trajectory tracking of a car-like mobile robot

Robotica ◽  
2013 ◽  
Vol 32 (1) ◽  
pp. 63-76 ◽  
Author(s):  
F. Hamerlain ◽  
T. Floquet ◽  
W. Perruquetti

SUMMARYThis paper deals with the problem of the practical tracking control of an experimental car-like system called the Robucar. The car-like Robucar is a four-wheeled car in a single steering mode. Based on a kinematic model of the car-like Robucar, a practical tracking controller is designed using the second-order sliding mode control of the super twisting algorithm. Hence, the output tracking of the desired trajectory is achieved, and the tracking errors vanish asymptotically. Experimental tests on the car-like Robucar are presented for simple and real-time nonholonomic trajectories, and comparative results with the conventional sliding controller demonstrate the applicability and efficiency of the proposed controller.

Author(s):  
Mien Van ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

In this paper, a robust output feedback tracking control scheme for uncertain robot manipulators with only position measurements is investigated. First, a quasi-continuous second-order sliding mode (QC2S)-based exact differentiator and super-twisting second-order sliding mode (STW2S) controllers are designed to guarantee finite time convergence. Although the QC2S produces continuous control and less chattering than that of a conventional sliding mode controller and other high-order sliding mode controllers, a large amount of chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To decrease the chattering, an uncertainty observer is used to compensate for the uncertainty effects, and this controller may possess a smaller switching gain. Compared to the QC2S controller, the STW2S has less chattering and tracking error when the system remains on the sliding manifold [Formula: see text]. Therefore, to further eliminate the chattering and obtain a faster transient response and higher tracking precision, we develop a quasi-continuous super-twisting second-order sliding mode controller, which integrates both the merits of QC2S and STW2S controllers. The stability and convergence of the proposed scheme are theoretically demonstrated. Finally, computer simulation results for a PUMA560 robot comparing with conventional QC2S and STW2S controllers are shown to verify the effectiveness of the proposed algorithm.


2013 ◽  
Vol 67 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Daqi Zhu ◽  
Xun Hua ◽  
Bing Sun

A biologically inspired neurodynamics-based tracking controller of underactuated Autonomous Underwater Vehicles (AUV) is proposed in this paper. The proposed control strategy includes a velocity controller with biological neurons and an adaptive sliding mode controller. The biological neurons are embedded into the backstepping velocity controller to eliminate the sharp speed jumps commonly existing in vehicles due to tracking errors changing suddenly. The outputs of the velocity controller are used as the command inputs of the sliding mode controller, and the thruster control constraints problems that are commonly seen in the backstepping control of AUV are solved by the proposed controller. Simulation results show that the control strategy achieved success in smoothly tracking AUV position and velocity.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Majid Taheri Andani ◽  
Zahra Ramezani ◽  
Saeed Moazami ◽  
Jinde Cao ◽  
Mohammad Mehdi Arefi ◽  
...  

Due to their complicated dynamics and underactuated nature, spherical robots require advanced control methods to reveal all their manoeuvrability features. This paper considers the path tracking control problem of a spherical robot equipped with a 2-DOF pendulum. The pendulum has two input torques that allow it to take angles about the robot’s transverse and longitudinal axes. Due to mechanical technicalities, it is assumed that these angles are immeasurable. First, a neural network observer is designed to estimate the pendulum angles. Then a modified sliding mode controller is proposed for the robot’s tracking control in the presence of uncertainties. Next, the Lyapunov theorem is utilized to analyse the overall stability of the proposed scheme, including the convergence of the observer estimation and the trajectory tracking errors. Finally, simulation results are provided to indicate the effectiveness of the proposed method in comparison with the other available control approaches.


Author(s):  
Van Mien ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

This article develops a new output feedback tracking control scheme for uncertain robot manipulators with only position measurements. Unlike the conventional sliding mode controller, a quasi-continuous second-order sliding mode controller (QC2C) is first designed. Although the QC2C produces continuous control and less chattering than conventional sliding mode and other high-order sliding mode controllers, chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To alleviate the chattering, an adaptive fuzzy QC2C (FQC2C) is designed, in which the fuzzy system is used to adaptively tune the sliding mode controller gain. Furthermore, in order to eliminate chattering and achieve higher tracking accuracy, quasi-continuous third-order sliding mode controller (QC3C) and fuzzy QC3C (FQC3C) are investigated. These controllers incorporate a super-twisting second-order sliding mode observer for estimating the joint velocities, and a robust exact differentiator to estimate the sliding manifold derivative; therefore, the velocity measurement is not required. Finally, computer simulation results for a PUMA560 industrial robot are also shown to verify the effectiveness of the proposed strategy.


Author(s):  
Imen Saidi ◽  
Asma Hammami

Introduction: In this paper, a robust sliding mode controller is developed to control an orthosis used for rehabilitation of lower limb. Materials and Methods: The orthosis is defined as a mechanical device intended to physically assist a human subject for the realization of his movements. It should be adapted to the human morphology, interacting in harmony with its movements, and providing the necessary efforts along the limbs to which it is attached. Results: The application of the sliding mode control to the Shank-orthosis system shows satisfactory dynamic response and tracking performances. Conclusion: In fact, position tracking and speed tracking errors are very small. The sliding mode controller effectively absorbs disturbance and parametric variations, hence the efficiency and robustness of our applied control.


Sign in / Sign up

Export Citation Format

Share Document