Topology and Size–Shape Optimization of an Adaptive Compliant Gripper with High Mechanical Advantage for Grasping Irregular Objects

Robotica ◽  
2019 ◽  
Vol 37 (08) ◽  
pp. 1383-1400 ◽  
Author(s):  
Chih-Hsing Liu ◽  
Chen-Hua Chiu ◽  
Mao-Cheng Hsu ◽  
Yang Chen ◽  
Yen-Pin Chiang

SummaryThis study presents an optimal design procedure including topology optimization and size–shape optimization methods to maximize mechanical advantage (which is defined as the ratio of output force to input force) of the synthesized compliant mechanism. The formulation of the topology optimization method to design compliant mechanisms with multiple output ports is presented. The topology-optimized result is used as the initial design domain for subsequent size–shape optimization process. The proposed optimal design procedure is used to synthesize an adaptive compliant gripper with high mechanical advantage. The proposed gripper is a monolithic two-finger design and is prototyped using silicon rubber. Experimental studies including mechanical advantage test, object grasping test, and payload test are carried out to evaluate the design. The results show that the proposed adaptive complaint gripper assembly can effectively grasp irregular objects up to 2.7 kg.

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior, and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and if the piezoelectric actuator element is considered as design or non-design. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Hong Zhou ◽  
Pranjal P. Killekar

The modified quadrilateral discretization model for the topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. There is a certain location shift between two neighboring rows of quadrilateral design cells. This modified quadrilateral discretization model allows any two contiguous design cells to share an edge whether they are in the horizontal, vertical, or diagonal direction. Point connection is completely eliminated. In the proposed topology optimization method, design variables are all binary, and every design cell is either solid or void to prevent gray cell problem that is usually caused by intermediate material states. Local stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum. No postprocessing is required for topology uncertainty caused by either point connection or gray cell. The presented modified quadrilateral discretization model and the proposed topology optimization procedure are demonstrated by two synthesis examples of compliant mechanisms.


Author(s):  
Masakazu Kobayashi ◽  
Hiroshi Yamakawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

Compliant mechanisms generated by traditional topology optimization methods have linear output response, and it is difficult for traditional methods to implement mechanisms having non-linear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, a two-stage design method based on topology and shape optimization is constructed here. In the first stage, topology optimization generates an initial and conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints that are used to control the output path at the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and the additional constraints are replaced by spring elements. The shape optimization is then executed, to generate a detailed shape of the compliant mechanism having the desired output path. In this stage, parameters that represent the outer shape of the compliant mechanism and the properties of spring elements are used as design variables in the shape optimization. In addition to configuration of the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, since it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.


Author(s):  
Hong Zhou ◽  
Pranjal P. Killekar

The modified quadrilateral discretization model for the topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. There is a certain location shift between two neighboring rows of quadrilateral design cells. This modified quadrilateral discretization model allows any two contiguous design cells to share an edge whether they are in the horizontal, vertical or diagonal direction. Point connection is completely eliminated. In the proposed topology optimization method, design variables are all binary and every design cell is either solid or void to prevent grey cell problem that is usually caused by intermediate material states. Local stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and avoid the need to select the initial guess solution and conduct sensitivity analysis. No postprocessing is needed for topology uncertainty caused by point connection or grey cell. The presented modified quadrilateral discretization model and the proposed topology optimization procedure are demonstrated by two synthesis examples of compliant mechanisms.


2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Chih-Hsing Liu ◽  
Guo-Feng Huang ◽  
Ta-Lun Chen

This paper presents an evolutionary soft-add topology optimization method for synthesis of compliant mechanisms. Unlike the traditional hard-kill or soft-kill approaches, a soft-add scheme is proposed in this study where the elements are equivalent to be numerically added into the analysis domain through the proposed approach. The objective function in this study is to maximize the output displacement of the analyzed compliant mechanism. Three numerical examples are provided to demonstrate the effectiveness of the proposed method. The results show that the optimal topologies of the analyzed compliant mechanisms are in good agreement with previous studies. In addition, the computational time can be greatly reduced by using the proposed soft-add method in the analysis cases. As the target volume fraction in topology optimization for the analyzed compliant mechanism is usually below 30% of the design domain, the traditional methods which remove unnecessary elements from 100% turn into inefficient. The effect of spring stiffness on the optimized topology has also been investigated. It shows that higher stiffness values of the springs can obtain a clearer layout and minimize the one-node hinge problem for two-dimensional cases. The effect of spring stiffness is not significant for the three-dimensional case.


2014 ◽  
Vol 971-973 ◽  
pp. 1941-1948
Author(s):  
Zhao Kun Li ◽  
Hua Mei Bian ◽  
Li Juan Shi ◽  
Xiao Tie Niu

Homogenization or material distribution method based topology optimization will create final topologies in grey level image and saw tooth jump discontinuity boundaries that are not suitable for direct engineering practice, so it is necessary to extract the topological diagram. And a new topology extraction method for compliant mechanisms is presented. In the fist stage, the grey image is transferred into the black-and white finite element topology optimization results. The threshold value meeting to objective function is obtained so that each element is either empty or solid; in the second stage, the density contour approach is used by redistributing nodal densities to generate the smooth boundaries; in the third stage, Smooth boundaries are represented by parameterized B-spline curves whose control points selected from the viewpoint of stiffness and flexibility constitute the parameters ready to undergo shape optimization; Then shape optimization is executed to improve stress-based local performance, The parameters that present the outer shape of the compliant mechanism are used as design variables; In the final stage, simulations of numerical examples are presented to show the validity of the proposed method.


2004 ◽  
Vol 126 (6) ◽  
pp. 975-983 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and whether the piezoelectric actuator element is considered design or nondesign. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


Author(s):  
SM Varedi-Koulaei ◽  
MR MohammadZadeh

The conventional mechanisms transmitted force and displacement through rigid members (high stiffness) and traditional joints (with high softness), where recently, researchers have come up with new systems called compliant mechanisms that transfer power and mobility through the deformation of their flexible members. One of the most frequently used approaches for designing compliant mechanisms is topology optimization. Extracting the optimal design of a displacement amplifying compliant mechanism using the modified Invasive Weed Optimization (MIWO) method is the current study's main novelty. The studied mechanism is a compliant micro-mechanism that can be used as a micrometric displacement amplifier. The goal of this synthesis is to maximize the output-to-input displacement ratio. In this research, a new random step is added to the Invasive Weed Optimization (IWO) method; the new seeds can be spread farther from their parents, which can be improved the algorithm's abilities. The results show that the use of the modified IWO algorithm for this problem has led to a significant improvement over the results from similar articles.


2003 ◽  
Vol 125 (2) ◽  
pp. 253-261 ◽  
Author(s):  
Dong Xu ◽  
G. K. Ananthasuresh

Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.


Sign in / Sign up

Export Citation Format

Share Document