Rapid and safe wire tension distribution scheme for redundant cable-driven parallel manipulators

Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Mohammad Reza Mousavi ◽  
Masoud Ghanbari ◽  
S. Ali A. Moosavian ◽  
Payam Zarafshan

Abstract A non-iterative analytical approach is investigated to plan the safe wire tension distribution along with the cables in the redundant cable-driven parallel robots. The proposed algorithm considers not only tracking the desired trajectory but also protecting the system against possible failures. This method is used to optimize the non-negative wire tensions through the cables which are constrained based on the workspace conditions. It also maintains both actuators’ torque and cables’ tensile strength boundary limits. The pseudo-inverse problem solution leads to an n-dimensional convex problem, which is related to the robot degrees of redundancy. In this paper, a comprehensive solution is presented for a 1–3 degree(s) of redundancy in wire-actuated robots. To evaluate the effectiveness of this method, it is verified through an experimental study on the RoboCab cable robot in the infinity trajectory tracking task. As a matter of comparison, some standard methods like Active-set and sequential quadratic programming are also presented and the average elapsed time for each method is compared to the proposed algorithm.

2010 ◽  
Vol 2 (2) ◽  
Author(s):  
P. J. Zsombor-Murray ◽  
A. Gfrerrer

After discussing the Study point transformation operator, a unified way to formulate kinematic problems, using “points moving on planes or spheres” constraint equations, is introduced. Application to the direct kinematics problem solution of a number of different parallel Schönflies motion robots is then developed. Certain not widely used but useful tools of algebraic geometry are explained and applied for this purpose. These constraints and tools are also applied to some special parallel robots called “double triangular” to show that the approach is flexible and universally pertinent to manipulator kinematics in reducing the complexity of some previously achieved solutions. Finally a novel two-legged Schönflies architecture is revealed to emphasize that good design is not only essential to good performance but also to easily solve kinematic models. In this example architecture, with double basally actuated legs so as to minimize moving mass, the univariate polynomial solution turns out to be simplest, i.e., of degree 2.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 353-353
Author(s):  
François Pierrot

It has been a pleasure for me to arrange this Special Issue of Robotica on Parallel Robots which provides 9 papers from authors from Asia, Oceania, North America and Europe; worldwide research on this topic is proof of the growing interest of both the scientific and the industrial areas of parallel mechanisms. I truly believe that the main reason for this enthusiasm is that parallel mechanisms research extends from theoretical mathematics and kinematics to applied robotics, and even beyond, creating new technological challenges.


2021 ◽  
Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Júlia Borràs ◽  
Aaron M. Dollar

This work studies in detail how the judicial application of compliance in parallel manipulators can produce manipulators that require significantly lower actuator effort within a range of desired operating conditions. We propose a framework that uses the Jacobian matrices of redundant parallel manipulators to consider the influence of compliance both in parallel with the actuated joints as well as the passive joints, greatly simplifying previous approaches. We also propose a simple optimization procedure to maximize the motor force reduction for desired regions of the workspace and range of external forces. We then apply the method to a Stewart-Gough platform and to a 3-URS (universal rotational and spherical joint) manipulator. Our results show that parallel manipulators with tasks that involve a preferred external force direction, as for instance, big weights in the platform, can see large reductions in actuator effort through the judicial use of compliant joints without significantly losing rigidity.


Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 359-368 ◽  
Author(s):  
Houssem Abdellatif ◽  
Bodo Heimann

SUMMARYThe paper presents a self-contained approach for the dynamics identification of six degrees of freedom (DOF) parallel robots. Major feature is the consequent consideration of structural properties of such machines to provide an experimentally adequate identification method. The known periodic excitation is modified and enhanced to take the actuator coupling as well as the numerical solution of the direct kinematics into account. The benefits of explicit frequency-domain data filtering are demonstrated. Additionally, a new implementation of the maximum-likelihood estimator allows for automatic tuning of the data filter. The issue of optimal input experiment design is also discussed and substantiated with extensive experiments.


Author(s):  
Patrick Grosch ◽  
Raffaele Di Gregorio ◽  
Federico Thomas

It will be shown how to generate under-actuated manipulators by substituting non-holonomic spherical pairs (nS pairs) for (holonomic) spherical pairs (S pairs) in fully-parallel manipulators (FPMs). Through this pair substitution, an under-actuated manipulator, previously proposed by one of the authors, will be demonstrated to be generated from an inversion of the 6-3 FPM. Moreover, the kinetostatic analysis of this manipulator will be reconsidered to obtain a simple and compact formulation. This reformulated analysis can be used both in the design of the under-actuated manipulator, and in its control.


Author(s):  
Lingyu Kong ◽  
Genliang Chen ◽  
Zhuang Zhang ◽  
Anhuan Xie ◽  
Hao Wang ◽  
...  

Abstract Kinematic error model plays an important role in improving the positioning accuracy of robot manipulators by kinematic calibration. In order to get a better calibration result, the error model should satisfy complete, minimal and continuous criteria. In order to meet the complete requirement, the multi degree-of-freedom (DOF) joints, such as universal or spherical joint in parallel robots, have to be regarded as serial chains formed by multiple independent single DOF joints, such that the manufacturing errors of these joints can be considered. However, several previous work found that these manufacturing errors for some parallel manipulators have little effect on the accuracy improvement. Besides, considering these kind of errors will cause the kinematics to be much more complicated. Therefore, under the assumptions of perfectly manufactured universal, spherical and cylinder joints, a complete, minimal and continuous (CMC) error model is presented in this paper. The identifiability of the kinematic errors of these multi-DOF joints are analytically analyzed. In order to verify the correctness and effectiveness of the proposed method, a numerical simulation of kinematic calibration is conducted on a 6-UPS parallel manipulator. The calibration result is also compared to the one derived from the error model with 138 error parameters. Since the error model and calibration methods are described uniformly, it can be applied to most parallel manipulators.


Sign in / Sign up

Export Citation Format

Share Document