Optimal trajectory planning and sliding mode control for robots using evolution strategy

Robotica ◽  
2000 ◽  
Vol 18 (4) ◽  
pp. 423-428 ◽  
Author(s):  
Young-Kiu Choi ◽  
Jin-Hyun Park ◽  
Hyun-Sik Kim ◽  
Jung Hwan Kim

Although robots have some kinematic and dynamic constraints such as the limits of the position, velocity, acceleration, jerk, and torque, they should move as fast as possible to increase the productivity. Researches on the minimum-time trajectory planning and control based on the dynamic constraints assume the availability of full dynamics of robots. However, the dynamic equation of robot may not often be exactly known. In this case, the kinematic approach for the minimum-time trajectory planning is more meaningful. We also have to construct a controller to track precisely the minimum-time trajectory. But, finding a proper controller is also difficult if we do not know the explicit dynamic equations of a robot.This paper describes an optimization of trajectory planning based on a kinematic approach using the evolution strategy (ES), as well as an optimization of a sliding mode tracking controller using ES for a robot without dynamic equations.

2021 ◽  
Vol 1802 (2) ◽  
pp. 022067
Author(s):  
Xing Zhang ◽  
Hao Kou ◽  
Yi Zhang ◽  
Kaina Jan ◽  
Boris Ivanovic

Author(s):  
Hui Li ◽  
Linxuan Zhang ◽  
Tianyuan Xiao ◽  
Jietao Dong

This paper introduces a CPS application for intelligent aeroplane assembly. At first, the CPS structure is presented, which acquires the characteristics of general CPS and enables "simulation-based planning and control" to achieve high level intelligent assembly. Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling, respectively. The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation, and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration, it can also directly link to data, and the error is smaller. This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control. A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness. At the same time, an outer collaborative trajectory planning is also designed. All the experiment results show the feasibility of above proposed methods.


2019 ◽  
Vol 52 (12) ◽  
pp. 334-339
Author(s):  
Marta Marques ◽  
Bruno J. Guerreiro ◽  
Rita Cunha ◽  
Carlos Silvestre

Sign in / Sign up

Export Citation Format

Share Document