A tetraconodontine pig from the Upper Miocene of Turkey

1998 ◽  
Vol 89 (3) ◽  
pp. 227-230 ◽  
Author(s):  
Jan van der Made ◽  
Vahdet Tuna

AbstractTwo species of Tetraconodontinae dispersed in the early Late Miocene from Eurasia into Africa. Tetraconodontinae then became the dominant pigs in the African Late Miocene and Pliocene. Although the dispersal to Africa must have come from SW Asia, no Tetraconodontinae were known from the area dating from the time of this dispersal.In this paper, a tetraconodontine tooth from the Nuri Yamut locality near AlÇitepe in European Turkey is described. In morphology, size and in geographical and stratigraphical position this tooth is close to a form that is ancestral to part of the African Tetraconodontinae. The tooth is assigned to cf. Conohyus giganteus, one of the species that dispersed to Africa.The dispersals of these Tetraconodontinae seem to be more or less coeval with that of Hipparion and are assumed to be allowed for by a change in global climate.

Author(s):  
Nikolaos Kargopoulos ◽  
Alberto Valenciano ◽  
Panagiotis Kampouridis ◽  
Thomas Lechner ◽  
Madelaine Böhme
Keyword(s):  

2002 ◽  
Vol 76 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Geerat J. Vermeij ◽  
Frank P. Wesselingh

Two neogastropod species occur in brackish intervals in the Pebas Formation (late Middle to early Late Miocene) of Peru and Colombia in western Amazonia. Purpura woodwardi Roxo, 1924, is assigned to Melongena Schumacher, 1817 (Melongenidae), and ?Nassarius reductus (Nassariidae) is recognized as a new species. These gastropods are among the very few marine invaders in the otherwise freshwater Pebas fauna. The small number of marine to freshwater transitions among South American molluscs contrasts with the situation among South American fishes and southeast Asian molluscs. It may be related to seasonal fluctuations in water level and anoxia in present-day South American freshwater environments, as well as to predation and productivity.


2018 ◽  
Vol 115 (48) ◽  
pp. 12130-12135 ◽  
Author(s):  
Allison T. Karp ◽  
Anna K. Behrensmeyer ◽  
Katherine H. Freeman

That fire facilitated the late Miocene C4grassland expansion is widely suspected but poorly documented. Fire potentially tied global climate to this profound biosphere transition by serving as a regional-to-local driver of vegetation change. In modern environments, seasonal extremes in moisture amplify the occurrence of fire, disturbing forest ecosystems to create niche space for flammable grasses, which in turn provide fuel for frequent fires. On the Indian subcontinent, C4expansion was accompanied by increased seasonal extremes in rainfall (evidenced by δ18Ocarbonate), which set the stage for fuel accumulation and fire-linked clearance during wet-to-dry seasonal transitions. Here, we test the role of fire directly by examining the abundance and distribution patterns of fire-derived polycyclic aromatic hydrocarbons (PAHs) and terrestrial vegetation signatures inn-alkane carbon isotopes from paleosol samples of the Siwalik Group (Pakistan). Two million years before the C4grassland transition, fire-derived PAH concentrations increased as conifer vegetation declined, as indicated by a decrease in retene. This early increase in molecular fire signatures suggests a transition to more fire-prone vegetation such as a C3grassland and/or dry deciduous woodland. Between 8.0 and 6.0 million years ago, fire, precipitation seasonality, and C4-grass dominance increased simultaneously (within resolution) as marked by sharp increases in fire-derived PAHs, δ18Ocarbonate, and13C enrichment inn-alkanes diagnostic of C4grasses. The strong association of evidence for fire occurrence, vegetation change, and landscape opening indicates that a dynamic fire–grassland feedback system was both a necessary precondition and a driver for grassland ecology during the first emergence of C4grasslands.


2019 ◽  
Vol 27 (6) ◽  
pp. 103-123
Author(s):  
O. B. Kuzmina ◽  
I. V. Khazina ◽  
P. V. Smirnov ◽  
A. O. Konstantinov ◽  
A. R. Agatova

For the first time some outcrops of the Upper Miocene Ishim Formation on the south of Tyumen Area near Pyatkovo, Masali and Bigila villages are studied by palynological method in detail. A series of mineralogical analyzes of these sediments and radiocarbon analysis of the Quaternary sediments overlying the Ishim Formation are done. Four palynocomplexes (PC) are established in the Ishim Formation: PC1 with Botryococcus; PC2 with Botryococcus, Sigmopollis; PC3 with Alnus, Polypodiaceae, Botryococcus, Sigmopollis; PC4 with Betula, Alnus, Corylus. The layers with PC1, PC2 и PC3 are traced in two outcrops near Masali and Bigila Villages. PC4 is revealed from the sands and aleuropelits of the outcrop near Pyatkovo Village, it is characterized by a significant content of diverse pollen of temperate termophylic broad-leafed taxa and by the presence of rare typical Miocene elements (Таxodiaceae, Nyssa, Tsuga). The PC3 and PC4 are compared with the complexes well known from the Neogene sediments of Western Siberia. PC5 with Betula, Herbae, Fungi is revealed from the bedded silts overlying the Ishim Formation in Masali outcrop. Previously, these sediments were attributed to the Late Miocene Pavlodar Formation. The composition and the structure of PC5 allowed making an assumption about Quaternary age of the enclosing sediments. Radiocarbon analysis of the organic substance from the silts showed, that these sediments were accumulated in the Late Pleistocene (Sartan Ice Age). For the first time the information about microphytoplankton (Botryococcus, Pediastrum, Zygnemataceae, Sigmopollis) and other nonpollen palynomorphs, contained in Ishim Formation (Upper Miocene) and in Pleistocene sediments, is given. On palynological data, some stages of development of the Late Miocene Ishim Basin and the type of vegetation surrounding this basin are considered. The depositional environment of Pleistocene sediments (Masali outcrop) is reconstructed.


2021 ◽  
Author(s):  
Chihao Chen ◽  
Yan Bai ◽  
Xiaomin Fang ◽  
Haichao Guo ◽  
Weilin Zhang ◽  
...  

<p>As an important driver of global climate change during the Cenozoic, the uplift of the Tibetan Plateau (TP) has strongly influenced the origination and evolution of the Asian monsoon system, and therefore the aridification of central Asia. Over the last two decades, the application of stable isotope paleoaltimeters and the discoveries of mammal and plant fossils have greatly promoted the understanding of the uplift history of the TP. However, paleoaltitudinal reconstructions based on different paleoaltimeters have suggested differing outcomes and therefore remain controversial. Novel paleoaltimeters have therefore needed to be developed and applied to constrain the uplift history of the TP more accurately and effectively by comparing and verifying multi-proxies. Paleothermometers based on glyceryl dialkyl glycerol tetraethers (GDGTs) are widely used in terrestrial and ocean temperature reconstructions. In this study, GDGT-based paleothermometers were tentatively applied to the Gyirong Basin on the southern TP, and the Xining Basins on the northern TP, in an attempt to quantitatively reconstruct their paleoaltitudes.</p><p>Both soil and aquatic-typed branched GDGTs have been identified from Late Miocene to Mid-Pliocene (7.0-3.2 Ma) samples taken from the Gyirong Basin; their reconstructed paleotemperatures were 7.5±3.3°C and 14.2±4.5°C, respectively. The former temperature may represent the mean temperature of the terrestrial organic matter input area, while the latter may represent the lake surface temperature. The results would suggest that the lake surface of the Gyirong Basin during the Late Miocene to Mid-Pliocene was 2.5±0.8 km and that the surrounding mountains exceeded 3.6±0.6 km, implying that the central Himalayas underwent a rapid uplift of ~1.5 km after the Mid-Pliocene.</p><p>GDGT-based paleotemperature reconstructions using MBT'<sub>5ME</sub> values show that the Xining Basin dropped in temperature by ~10°C during the ~10.5-8 Ma period, exceeding that in sea surface temperatures and low-altitude terrestrial temperatures during these periods. By combining these results with contemporaneous tectonic and sedimentary records, we infer that these cooling events signaled the regional uplift with the amplitude of ~1 km of the Xining basins. Our results support that the TP was still growing and uplifting substantially since the Late Miocene, which may provide new evidence for understanding the growth, expansion and uplift patterns of the TP.</p>


2021 ◽  
Author(s):  
Vitale Stefano ◽  
Prinzi Ernesto Paolo ◽  
Francesco D'Assisi Tramparulo ◽  
Sabatino Ciarcia

<p>We present a structural study on late Miocene-early Pliocene out-of-sequence thrusts affecting the southern Apennine chain. The analyzed structures are exposed in the Campania region (southern Italy). Here, leading thrusts bound the N-NE side of the carbonate ridges that form the regional mountain backbone. In several outcrops, the Mesozoic carbonates are superposed onto the unconformable wedge-top basin deposits of the upper Miocene Castelvetere Group, providing constraints to the age of the activity of this thrusting event. We further analyzed the tectonic windows of Giffoni and Campagna, located on the rear of the leading thrust. We reconstructed the orogenic evolution of this part of the orogen. The first was related to the in-sequence thrusting with minor thrusts and folds, widespread both in the footwall and in the hanging wall. A subsequent extension has formed normal faults crosscutting the early thrusts and folds. All structures were subsequently affected by two shortening stages, which also deformed the upper Miocene wedge top basin deposits of the Castelvetere Group. We interpreted these late structures as related to an out-of-sequence thrust system defined by a main frontal E-verging thrust and lateral ramps characterized by N and S vergences. Associated with these thrusting events, LANFs were formed in the hanging wall of the major thrusts. Such out-of-sequence thrusts are observed in the whole southern Apennines and record a thrusting event that occurred in the late Messinian-early Pliocene. We related this tectonic episode to the positive inversion of inherited normal faults located in the Paleozoic basement. These envelopments thrust upward crosscut the allochthonous wedge, including, in the western zone of the chain, the upper Miocene wedge-top basin deposits. Finally, we suggest that the two tectonic windows are the result of the formation of an E-W trending regional antiform, associated with a late S-verging back-thrust, that has been eroded and crosscut by Early Pleistocene normal faults.</p>


Sign in / Sign up

Export Citation Format

Share Document