Herpetofauna of a northern Australian monsoon rain forest: seasonal changes and relationships to adjacent habitats

1988 ◽  
Vol 4 (3) ◽  
pp. 227-238 ◽  
Author(s):  
K. C. Martin ◽  
W. J. Freeland

ABSTRACTThe herpetofauna of a floodplain monsoon rain forest in northern Australia is composed primarily of species from non rain forest habitats. The majority of frog species use rain forest as a seasonal refuge, and there is a marked increase in numbers during the dry season. Faunal richness lies within limits expected on the basis of the length of the dry season and species richnesses of non-Australian faunas. There are few lizard species and an abundance of frog species (none of which is a rain forest specialist) in comparison to rain forest herpetofaunas in other tropical regions. The impoverished lizard fauna, and the paucity of rain forest specialists may be because (a) seasonal invasion of rain forest by frogs prevents evolution of, or colonization by, specialists or (b) rain forest specialists may not have been able to cross semiarid habitats separating the Northern Territory from eastern Australian rain forests. The herpetofaunas of monsoon forests in Cape York Peninsula may provide a means of distinguishing between these hypotheses.

Author(s):  
G. W. Lawson

In a paper entitled ‘Africa – the odd man out’ Richards (1973) pointed out that of the three main regions of tropical rain forest he recognised, namely American, African and Indo–Malaysian, the African rain forest stands out as distinct from the others. He took this view largely on the comparative poverty of its flora, the wider distribution of African plants, and the poor representation of certain plant groups such as palms, orchids and trees of the family Lauraceae. In addition, Africa is relatively poorly endowed with some life forms such as lianes and epiphytes. He attributed the uniqueness of tropical Africa to a number of possible factors. In the first place, differences may be due to climate since the uniformly high rainfall, humidity, temperatures, and absence of a regular dry season that occur in parts of the other two tropical regions are evidently rare or lacking in Africa. A distinct dry season, often of over two months, is nearly always present, and even in the central Congo basin there is usually at least one month when rainfall is less than 100 mm. Secondly, the impact of human beings on vegetation has been longer and more sustained in Africa than elsewhere, so much so that the presence of any truly primeval or so-called virgin forest is very questionable. However, it is unlikely that present day climatic factors and human interference can wholly account for the unique position of African rain forest, and historical reasons must also be sought. Thus it seems probable that the vicissitudes of climate, recorded as arid and pluvial periods in African lake sediments, have been much greater than those in the other two regions in question.


Author(s):  
Titis Apdini ◽  
Windi Al Zahra ◽  
Simon J. Oosting ◽  
Imke J. M. de Boer ◽  
Marion de Vries ◽  
...  

Abstract Purpose Life cycle assessment studies on smallholder farms in tropical regions generally use data that is collected at one moment in time, which could hamper assessment of the exact situation. We assessed seasonal differences in greenhouse gas emissions (GHGEs) from Indonesian dairy farms by means of longitudinal observations and evaluated the implications of number of farm visits on the variance of the estimated GHGE per kg milk (GHGEI) for a single farm, and the population mean. Methods An LCA study was done on 32 smallholder dairy farms in the Lembang district area, West Java, Indonesia. Farm visits (FVs) were performed every 2 months throughout 1 year: FV1–FV3 (rainy season) and FV4–FV6 (dry season). GHGEs were assessed for all processes up to the farm-gate, including upstream processes (production and transportation of feed, fertiliser, fuel and electricity) and on-farm processes (keeping animals, manure management and forage cultivation). We compared means of GHGE per unit of fat-and-protein-corrected milk (FPCM) produced in the rainy and the dry season. We evaluated the implication of number of farm visits on the variance of the estimated GHGEI, and on the variance of GHGE from different processes. Results and discussion GHGEI was higher in the rainy (1.32 kg CO2-eq kg−1 FPCM) than in the dry (0.91 kg CO2-eq kg−1 FPCM) season (P < 0.05). The between farm variance was 0.025 kg CO2-eq kg−1 FPCM in both seasons. The within farm variance in the estimate for the single farm mean decreased from 0.69 (1 visit) to 0.027 (26 visits) kg CO2-eq kg−1 FPCM (rainy season), and from 0.32 to 0.012 kg CO2-eq kg−1 FPCM (dry season). The within farm variance in the estimate for the population mean was 0.02 (rainy) and 0.01 (dry) kg CO2-eq kg−1 FPCM (1 visit), and decreased with an increase in farm visits. Forage cultivation was the main source of between farm variance, enteric fermentation the main source of within farm variance. Conclusions The estimated GHGEI was significantly higher in the rainy than in the dry season. The main contribution to variability in GHGEI is due to variation between observations from visits to the same farm. This source of variability can be reduced by increasing the number of visits per farm. Estimates for variation within and between farms enable a more informed decision about the data collection procedure.


2004 ◽  
Vol 34 (2) ◽  
pp. 331-332 ◽  
Author(s):  
Welton Yudi ODA

Communal nesting has been registered for a number of lizard species at different sites. Here it is described communal egg laying of Gonatodes humeralis at different sites near and in human buildings in the period between 1990 and 1998. All these communal nests have been found in the dry season, between April and July, suggesting that the nests of are more common in this season, when the activity of their predators is less intense and the reduction of humidity diminish the decomposition action of the fungi that may kill the eggs.


Check List ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 405 ◽  
Author(s):  
Adrian Antonio Garda ◽  
Taís Borges Costa ◽  
Carlos Roberto dos Santos-Silva ◽  
Daniel Oliveira Mesquita ◽  
Renato Gomes Faria ◽  
...  

We provide a list of amphibian and squamate species collected in the Raso da Catarina Ecological Station, Bahia state, Brazil, during two distinct periods. An initial visual inventory of amphibians was conducted monthly from March 2010 to February 2011, using transects in a forest and temporary ponds. The second inventory was conducted over a 30-day period between March and April, 2012, when 37 pitfall trap arrays, each consisting of four buckets and supplementary glue traps, were set in low scrub and forest, complemented by opportunistic searches. A total of 19 lizard species, two amphisbaenians, 21 frogs, and 11 snakes were recorded during the study. New records for the protected area include 10 lizards, one amphisbaenian, 15 amphibians, and 11 snakes (36 species in total). Several species typical of the Atlantic Forest were collected, reflecting the potential influence of this biome, especially in the sampled forest habitats (Mata da Pororoca).


1994 ◽  
Vol 72 (12) ◽  
pp. 1843-1857 ◽  
Author(s):  
Denis Loubry

The French Guianan forest is an evergreen rain forest that contains approximately 100 deciduous tree species. The taxonomical distribution of the deciduous character is widely spread, and its presence or absence among some taxa, as well as its ancient origin, are arguments in favour of an endogenous origin. Leaf-fall periodicity was studied on a sample of 500 trees during a 2-year period. Periodicity is annual and seasonal. It is not correlated to rainfall and not linked to the occurrence of a dry season. It seems closely correlated to photoperiodical variations, even though those variations are weak (35 min at latitude 5°30′N). However, each tree has its own periodicity for leaves shedding. Therefore, there is a paradox between seasonality and individual periodicity of leaf fall. The existence of this paradox leads us to consider the hypothesis of an integration of endogenous and exogenous components in the determination of leaf-fall periodicity. Key words: deciduousness, French Guiana, phenology, photoperiodism, tree, tropical rain forest.


2001 ◽  
Vol 41 (5) ◽  
pp. 663 ◽  
Author(s):  
S. J. Blaikie ◽  
E. K. Chacko ◽  
P. Lu ◽  
W. J. Müller

Cashew is an emerging crop in the seasonally ‘wet–dry’ tropical regions of northern Australia. In North Queensland flowering and fruiting of cashew coincides with the dry season (May–November). During this period growers sprinkler irrigate at 500 L/tree.week. A 3-year (1996–98) experiment compared this strategy with alternatives, including no irrigation or drip irrigation in which 115 or 230 L/tree.week was applied by drippers placed near the tree trunk and near the canopy drip line throughout the dry season. Measurements of soil water to 1.3 m, leaf gas exchange, chlorophyll fluorescence, tree sap flow and yield were made. Data collected in the first 2 years showed that the water requirement of the trees increased progressively as the crop load and evaporative demand increased during the dry season. During the final year of the study, additional sprinkler and drip treatments, in which water applications were progressively increased during the dry season, were introduced. The productivity of cashew in this experiment was strongly influenced by irrigation treatments, ranging (over all years) from 42 to 160 g nut/m 2 canopy surface area. Depletion of plant-available water in the root zone was associated with a reduction in photosynthesis mediated by partial stomatal closure. These effects of soil drying were evident in all irrigated treatments during the mid and late stages of the dry season but were more severe in treatments receiving the least water. When irrigation was withheld until the mid-stage of the dry season the trees had similar yields to those that were irrigated throughout, emphasising the importance of providing adequate irrigation between nut set and harvest. When rainfall from January to September in each year of the study was taken into account, there was a strong linear relationship between nut yield and water applied (rainfall + irrigation), with each extra kilolitre of water applied resulting in about 6 extra g nut/m 2 canopy surface area. This linear relationship was based on water application in the range 25–50 kL per season. It is possible that if the seasonal water application had exceeded 50 kL the marginal response to extra water may have diminished. Using drippers was slightly more efficient than sprinklers, with drip-irrigated trees requiring about 5% less water applied to achieve a given nut yield. In years when rainfall is average, and subject to other economic factors, growers in North Queensland should aim to irrigate about 500 L/tree.week. In years of low rainfall between January and September it is likely that yield will be improved by applying more irrigation water; high rainfall during these months of the year may reduce the irrigation requirement. In all cases growers should be careful to accurately monitor water applications, particularly when the total (from rainfall &plus; irrigation) exceeds 40 kL/tree for the season.


Biotropica ◽  
2009 ◽  
Vol 42 (4) ◽  
pp. 470-478 ◽  
Author(s):  
Heidi J. Renninger ◽  
Nathan Phillips ◽  
Guido D. Salvucci

2018 ◽  
Author(s):  
Luciana Varanda Rizzo ◽  
Pontus Roldin ◽  
Joel Brito ◽  
John Backman ◽  
Erik Swietlicki ◽  
...  

Abstract. The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles pre-industrial conditions. In the dry season, the Basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10–600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between years 2008–2010 and 2012–2014. Median particle number concentration was 403 cm−3 in the wet season and 1254 cm−3 in the dry season. The Aitken mode (~ 30–100 nm in diameter) was prominent during the wet season, while accumulation mode (~ 100–600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distribution influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1D column model (ADCHEM – Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess importance of processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions (ii) entrainment of accumulation mode aerosols in the morning, and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modelled particle number size distributions. However, convective downdrafts are often associated with rain and thus act both as a source of Aitken mode particles, and as a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources are essential to sustain particle number concentrations in Amazonia.


Sign in / Sign up

Export Citation Format

Share Document