Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo

2007 ◽  
Vol 23 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Rajanathan Rajaratnam ◽  
Mel Sunquist ◽  
Lynette Rajaratnam ◽  
Laurentius Ambu

Ten leopard cats (Prionailurus bengalensis borneoensis) were captured and radio tracked in an agricultural landscape in Sabah, Malaysia. Seventy-two leopard cat scats were analysed for diet while information on prey distribution and abundance was obtained from a concurrent study on small mammals. Mammals, namely murids, were the major prey with Whitehead's rat (Maxomys whiteheadi) being the principal prey species. Leopard cats significantly preferred the relatively open oil palm habitat over both selectively logged dipterocarp forest and secondary forest fragments. Although relative murid abundance was highest in selectively logged dipterocarp forest, oil palm harboured a higher relative abundance of Maxomys whiteheadi. Visibility and ease of movement for leopard cats was also better in oil palm, thereby possibly increasing their hunting success. We suggest that the significantly higher use of oil palm by leopard cats is related to their preference for areas with high prey ‘catchability’ rather than high prey density. Although secondary-forest fragments were least selected, they were important to leopard cats for resting and possibly breeding, highlighting the importance of forest fragments for the conservation of Bornean leopard cats in agricultural landscapes.

2017 ◽  
Vol 44 (8) ◽  
pp. 603 ◽  
Author(s):  
Kieran Love ◽  
David J. Kurz ◽  
Ian P. Vaughan ◽  
Alison Ke ◽  
Luke J. Evans ◽  
...  

Context Oil palm plantations have become a dominant landscape in Southeast Asia, yet we still understand relatively little about the ways wildlife are adapting to fragmented mosaics of forest and oil palm. The bearded pig is of great ecological, social and conservation importance in Borneo and is declining in many parts of its range due to deforestation, habitat fragmentation and overhunting. Aims We assessed how the bearded pig is adapting to oil palm expansion by investigating habitat utilisation, activity patterns, body condition and minimum group size in a mosaic landscape composed of forest fragments and surrounding oil palm plantations. Methods We conducted our study in Sabah, Malaysian Borneo, in and around the Lower Kinabatangan Wildlife Sanctuary, a protected area consisting of secondary forest fragments (ranging 1200–7400ha) situated within an extensive oil palm matrix. We modelled bearded pig habitat use in forest fragments and oil palm plantations using survey data from line transects. Camera traps placed throughout the forest fragments were used to assess pig activity patterns, body condition and minimum group size. Key results All forest transects and 80% of plantation transects showed pig presence, but mean pig signs per transect were much more prevalent in forest (70.00±13.00s.e.) than in plantations (0.91±0.42s.e.). Pig tracks had a positive relationship with leaf cover and a negative relationship with grass cover; pig rooting sites had a positive relationship with wet and moderate soils compared with drier soils. Ninety-five percent of pigs displayed ‘good’ or ‘very good’ body condition in forests across the study area. Pigs also aggregated in small groups (mean=2.7±0.1s.e. individuals), and showed largely diurnal activity patterns with peak activity taking place at dawn and dusk. Groups with piglets and juveniles were more active during the day and less active at night as compared to overall activity patterns for all groups. Conclusions Our findings suggest that bearded pigs in our study area regularly utilise oil palm as habitat, as indicated by their signs in most oil palm sites surveyed. However, secondary forest fragments are used much more frequently and for a wider range of behaviours (e.g. nesting, wallowing) than adjacent oil palm plantations. These forests clearly remain the most important habitat for the bearded pig in the Lower Kinabatangan Wildlife Sanctuary, and their protection is a high conservation priority for this species. Implications Consistent bearded pig presence in oil palm is potentially an indication of successful adaptation to agricultural expansion in the study area. The apparently good body condition displayed by the vast majority of pigs in our study likely results from year-round cross-border fruit subsidies from surrounding oil palm plantations. The consistent diurnal activity displayed by groups containing piglets and juveniles may indicate predator avoidance strategies, whereas the substantial nocturnal activity we observed by other groups could suggest fewer threats for larger individuals. However, the overall effects of oil palm expansion in the region on bearded pig population health, foraging ecology, and movement ecology remain unknown.A


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tharaka Kusuminda ◽  
Amani Mannakkara ◽  
Rajika Gamage ◽  
Bruce D. Patterson ◽  
Wipula B. Yapa

Abstract Bats spend more than half of their life in roosts, where key life events transpire. Therefore the availability and selection of roosts are important to bats everywhere, and may limit their ability to exploit every habitat, including agricultural landscapes such as paddy fields, orchards and tea plantations. This study aimed to investigate the day roosts used by insectivorous bat species in tea plantations of Sri Lanka. We surveyed 18 tea plantations where we recorded a total of 44 roosts involving five families and nine species of bats (Hipposideros galeritus, Hipposideros lankadiva, Hipposideros speoris, Rhinolophus beddomei, Rhinolophus rouxii, Megaderma spasma, Pipistrellus ceylonicus, Pipistrellus coromandra and Miniopterus cf. fuliginosus). Most (26) of the recorded roosts were geomorphic, (11) were anthropogenic, and (7) were in vegetation. H. lankadiva and M. cf. fuliginosus are the only species known to roost exclusively in geomorphic roosts; all others were opportunistic. Although protecting bat roosts is crucial for their conservation, it is challenging in view of existing tea management practices. Therefore, natural roosts should be maintained and protected. The introduction of artificial roosts might increase the number of bats able to forage over tea plantations and maximize their consumption of agricultural pests, thereby increasing tea production.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Meaghan N Evans ◽  
Sergio Guerrero-Sanchez ◽  
Peter Kille ◽  
Carsten T Müller ◽  
Mohd Soffian Abu Bakar ◽  
...  

Abstract Agricultural development is a major threat to global biodiversity, and effective conservation actions are crucial. Physiological repercussions of life alongside human-modified landscapes can undermine adaptable species’ health and population viability; however, baseline data are lacking for many wildlife species. We assessed the physiological status of a generalist carnivore, the Malay civet (Viverra tangalunga), persisting within an extensively human-modified system in Sabah, Malaysian Borneo. We characterized hematology and serum biochemistry panels from civets sampled across a mosaic landscape comprising tropical forest fragments and oil palm plantations. Intra-population variation in certain blood parameters were explained by expected biological drivers such as sex, age category and sampling season. Furthermore, we determined several erythrocyte measures, immune cell counts and dietary biochemistry markers significantly varied with proximity to oil palm plantation boundaries. These findings were supported by a case study, whereby blood profiles of GPS collared male civets were contrasted based on their exclusive use of forests or use of oil palm plantations. These data provide robust and valuable first insights into this species’ physiological status and suggest agricultural landscapes are impacting the persisting population.


2021 ◽  
Vol 4 ◽  
Author(s):  
Marc Ancrenaz ◽  
Felicity Oram ◽  
Nardiyono Nardiyono ◽  
Muhammad Silmi ◽  
Marcie E. M. Jopony ◽  
...  

Historically, orangutans (Pongo spp.) lived in large contiguous areas of intact rainforest. Today, they are also found in highly modified and fragmented landscapes dominated by oil palm or industrial timber plantations; a situation that calls for new conservation approaches. Here we report signs of orangutan presence in more than 120 small forest fragments of <500 ha in size and isolated in extensive oil palm plantations across Borneo. We confirmed the long-term presence of adult resident females with dependent young in 42% of the fragments assessed by ground survey (n = 50), and the regular sightings of males traveling across the landscape. We argue that orangutans using and living in small isolated forest patches play an essential part in the metapopulation by maintaining gene flow among larger sub-populations distributed across multiple-use landscapes. In some cases, translocations may be necessary when the animals are in imminent danger of being killed and have no other refuge. However, the impacts of removing animals from spatially dispersed metapopulations could inadvertently decrease critical metapopulation functionality necessary for long-term viability. It is clear that orangutans need natural forest to survive. However, our findings show that forest fragments within agricultural landscapes can also complement conservation areas if they are well-distributed, properly connected and managed, and if orangutan killing is prevented. Efforts to better understand the dynamics and the functionality of an orangutan metapopulation in forest-farmland landscape mosaics characteristic of the Anthropocene are urgently needed to design more efficient conservation strategies for the species across its range.


2019 ◽  
Vol 11 (4) ◽  
pp. 13448-13458 ◽  
Author(s):  
Wyatt Joseph Petersen ◽  
Tommaso Savini ◽  
Robert Steinmetz ◽  
Dusit Ngoprasert

The Leopard Cat Prionailurus bengalensis is thought to be Asia’s most abundant wild cat.  Yet, the species’ status is poorly known due to a lack of rigorous population estimates.  Based on the few studies available, Leopard Cats appear to be more abundant in degraded forests, potentially due to increased prey availability.  We conducted camera trap surveys, rodent live-trapping, and spatially-explicit capture-recapture analyses to estimate the density of Leopard Cats within a degraded tropical forest fragment (148km2) in northeastern Thailand.  A total effort of 12,615 camera trap nights across 65km2 of trapping area resulted in at least 25 uniquely identified individuals.  Average rodent biomass (the main prey of Leopard Cats) was highest in the dry evergreen forest (469.0g/ha), followed by dry dipterocarp forest (287.5g/ha) and reforested areas (174.2g/ha).  Accordingly, Leopard Cat densities were highest in the dry evergreen forest with 21.42 individuals/100km2, followed by the reforested areas with 7.9 individuals/100km2.  Only two detections came from the dry dipterocarp forest despite both an extensive survey effort (4,069 trap nights) and available prey.  Although the dipterocarp supported the second highest average rodent biomass, it lacked a key prey species, Maxomys surifer, possibly explaining low encounter rates in that habitat.  Our results provide important baseline information concerning the population status of Leopard Cat in southeastern Asia.  Further, our findings corroborate with other studies that found a tolerance among Leopard Cats for degraded forests, highlighting the potential for forest fragments to serve as long-term conservation areas for the species.


2021 ◽  
Vol 32 (1) ◽  
pp. 47-60
Author(s):  
María Alejandra Cely-Gómez ◽  
◽  
Dennis Castillo-Figueroa ◽  
Jairo Pérez-Torres ◽  
◽  
...  

The surge of oil palm production in the Neotropics has become a major concern about the potential impacts on biodiversity. In the Colombian Orinoquia, which has shown a massive landscape transformation due to the growth of oil palm plantations, the effects of oil palm agriculture on bats in this region have not been studied up to date. To understand the impact of habitat conversion on bat diversity, we characterised bat assemblages in secondary forest and palm plantations in the Colombian Piedmont foothills (Meta, Colombia). We captured 393 individuals (forest = 81, plantation = 312) of 18 species and three families. The forest cover presented three exclusive species while the plantation had five. Species diversity (q1) and evenness (J’) were higher in the forest compared to the plantation. These differences derived from the increase in abundances of generalist species (Artibeus sp., Carollia spp.) in the plantation. Despite the habitat simplification caused by oil palm plantations, this monoculture provides a cover that is used by some bats, decreasing their risk of predation and allowing movement between patches of forest habitat as stepping-stones. Maintaining forest cover in agricultural landscapes favours diversity by generating a “spillover effect” of the forest towards plantations, which in the case of some bats contributes to the reduction of species isolation and the maintenance of ecosystem services provided by them. It is important to improve management practices of oil palm plantations to minimise negative impacts on biodiversity, considering the expansion of this productive system and the scarcity of protected areas in this region.


2019 ◽  
Author(s):  
Mariana Vélez-Orozco ◽  
Laura M. Romero ◽  
John H. Castaño ◽  
Jaime A. Carranza-Quiceno ◽  
Jairo Pérez-Torres ◽  
...  

AbstractThe current debate on the future of biodiversity gives rise to the need to integrate agricultural landscapes into conservation strategies. Bats are an important component of vertebrate diversity in many terrestrial landscapes where they provide invaluable and important ecosystem services to human societies such as insect pest control, pollination and seed dispersal. Here we study bat diversity and abundance in three landscapes representing a transformational gradient (continuous forests, forest fragments and crops) in an Andean agricultural scenario known as Colombia’s “Coffee Cultural Landscape”. We captured 1146 bats from 32 species and 4 families. The bat diversity and abundance in this landscape were high, especially for frugivorous bats, but there were no differences among the three transformational landscapes. However, some species were captured differentially between landscapes, suggesting that these landscapes have characteristics that influence the relative abundance of bats. Additionally, body weight and sex affect the abundance of some species in forest fragments and crops.


Oryx ◽  
2006 ◽  
Vol 40 (1) ◽  
pp. 36-41 ◽  
Author(s):  
J. Mohd. Azlan ◽  
Dionysius S. K. Sharma

A study to describe the diversity of wild felids was carried out in Jerangau Forest Reserve, Ulu Terengganu, Malaysia, using camera traps, over a period of 21 months. A total of 24 camera traps were used, with a total of 5,972 trap days. Six species of wild cats in five genera were recorded: tiger Panthera tigris, leopard Panthera pardus, clouded leopard Neofelis nebulosa, leopard cat Prionailurus bengalensis, golden cat Catopuma temminckii and marbled cat Pardofelis marmorata. This represents all but two of the felid species known to occur in Peninsular Malaysia. The use of camera traps provided detailed information on the occurrence and activity patterns of these relatively secretive mammals. The most frequently photographed species was tiger (38.5% of records) followed by leopard (26.3%) and leopard cat (21.9%). The presence of charismatic flagship species such as tiger in this unprotected lowland dipterocarp secondary forest will be of help to local conservation organizations and the Wildlife Department in any proposals for the protection of these areas.


Author(s):  
Marc Ancrenaz ◽  
Felicity Oram ◽  
Nardiyono Nardiyono ◽  
Muhammad Silmi ◽  
Marcie Elene Marcus Jopony ◽  
...  

Orangutans (Pongo spp.) occur at low densities and therefore large areas are necessary to sustain viable metapopulations, defined here as sets of conspecific units of individuals linked by dispersal. Historically, orangutans lived in large contiguous areas of intact rainforest, but are now increasingly found in agricultural and other landscapes modified by people. Here we collate evidence of orangutans utilizing isolated forest fragments (< 500 ha) within multiple-use landscapes dominated by oil palm monoculture across Borneo. Orangutan signs (i.e. nests) were evident in 76 fragments surveyed by helicopter, and in 50 of 70 additional fragments surveyed on the ground; on average 63 ha in size. This includes presence of adult resident females with dependent young confirmed in 40% of the fragments assessed by ground survey. Our study revealed some resident females are raising offspring in isolated forest patches within mature oil palm stands. This not only confirms that some forest patches can sustain orangutans, but indicates migratory males are capable of reaching these fragments scattered throughout the multiple-use landscape. Therefore, orangutans that use or live in even small isolated forest patches are an essential part of the overall metapopulation by maintaining gene flow between, and genetic connectivity within, populations distributed across larger multiple-use landscapes. Orangutan survival is commonly thought to be low in small, isolated forest patches, and the customary management strategy is to remove (translocate) these individuals and release them in larger forests. In some cases, translocations may be necessary, i.e. in case of fire or when the animals are in eminent danger of being killed and have no other refuge. However, the small amount of data available indicates that mortality rates during and after translocations are high, while the impacts of removing animals from spatially dispersed metapopulations are unknown. Therefore, we argue the current policy of routine translocation rather than conserving the species within human-modified landscapes could inadvertently decrease critical metapopulation functionality necessary for long-term viability. It is clear that orangutans need natural forest to survive, but our findings show that fragmented agricultural landscapes can also serve as complementary conservation areas in addition to fully protected areas if they are well designed with ecological connections, and if orangutan killing can be prevented. To achieve this, we call for a paradigm shift from the traditional large single forest model to one that emphasizes metapopulation functionality in the fragmented forest - human use matrix characteristic of the Anthropocene.


Sign in / Sign up

Export Citation Format

Share Document