wild felids
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 37)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Barbara Willi ◽  
Marina L. Meli ◽  
Chiara Cafarelli ◽  
Urs O. Gilli ◽  
Anja Kipar ◽  
...  

Abstract Background Cytauxzoon spp. infection is believed to be a newly emerging tick-borne disease in felids in Europe, with three species of the haemoparasite having recently been differentiated in wild felids. In Switzerland, rare infections have been documented in domestic cats in the west and northwest of the country, the first of which was in 2014. The aims of the present study were: (i) to characterize a Cytauxzoon spp. hotspot in domestic cats in central Switzerland; (ii) to elucidate the geographic distribution of Cytauxzoon spp. in domestic cats in Switzerland; (iii) to assess suspected high-risk populations, such as stray and anaemic cats; and (iv) to investigate the newly emerging nature of the infection. Cytauxzoon spp. were further differentiated using mitochondrial gene sequencing. Methods The overall study included samples from 13 cats from two households in central Switzerland (study A), 881 cats from all regions of Switzerland (study B), 91 stray cats from a hotspot region in the northwest of Switzerland and 501 anaemic cats from across Switzerland (study C), and 65 Swiss domestic cats sampled in 2003 and 34 European wildcats from eastern France sampled in the period 1995–1996 (study D). The samples were analysed for Cytauxzoon spp. using real-time TaqMan quantitative PCR, and positive samples were subjected to 18S rRNA, cytochrome b (CytB) and cytochrome c oxidase subunit I (COI) gene sequencing. Results In study A, six of 13 cats from two neighbouring households in central Switzerland tested postive for Cytauxzoon spp.; two of the six infected cats died from bacterial infections. In studies B and C, only one of the 881 cats (0.1%; 95% confidence interval [CI]: 0–0.3%) in the countrywide survey and one of the 501 anaemic cats (0.2%; 95% CI: 0–0.6%) tested postive for Cytauxzoon spp. while eight of the 91 stray cats in the northwest of Switzerland tested positive (8.8%; 95% CI: 3.0–14.6%). In study D, Cytauxzoon spp. was detected in one of the 65 domestic cat samples from 2003 (1.5%; 95% CI: 0–4.5%) and in ten of the 34 European wildcat samples from 1995 to 1996 (29%; 95% CI: 14.2–44.7%). The isolates showed ≥ 98.6% sequence identities among the 18S rRNA, CytB and COI genes, respectively, and fell in the subclade Cytauxzoon europaeus based on CytB and COI gene phylogenetic analyses. Conclusions The study challenges the newly emerging nature of Cytauxzoon spp. in central Europe and confirms that isolates from domestic cats in Switzerland and European wild felids belong to the same species. Graphical Abstract


2021 ◽  
Author(s):  
Franciany Braga‐Pereira ◽  
Carmen Van‐Dúnem Santos ◽  
Rômulo Romeu Nóbrega Alves ◽  
Luke Hunter

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3533
Author(s):  
Ana Silvestre-Ferreira ◽  
Josep Pastor

Wild felids and domestic cats share the AB blood group. However, there have been few studies regarding the characterization and prevalence of the different blood types in wild animals. The erythrocyte membrane glycolipids of the wild cats correspond to the major disialoganglioside patterns observed in domestic cats. Like in domestic cats, type A blood seems to be the most common, although wild felid species seem to exhibit one single blood type. Of the species studied, the wild domestic cats, and the Panthera and ocelot lineages, all had type A blood; the Puma lineage showed almost exclusively type B blood. The prevalence of wild felids blood types show that there seems to be variation between species, but not within species, and no evidence of geographical variation has yet been found, showing apparently no genetic variability. The presence of alloantibodies has also been demonstrated, so the risk of life-threatening transfusion reactions due to mismatched transfusions and neonatal isoerythrolysis is a possibility. Like in other species, the recognition of wild felids blood groups is clinically relevant, as it can also be important in establishing phylogenetic relationships within the Felidae family. We will review the current knowledge on this topic and give insights into the wild felids blood groups potential for zoo transfusion medicine and phylogenetic studies in order to help support reintroduction projects and to preserve genetic diversity.


2021 ◽  
Vol 73 (5) ◽  
pp. 1111-1116
Author(s):  
A.R. Oliveira ◽  
F.M.A.M. Pereira ◽  
D.O. Santos ◽  
T.P. Carvalho ◽  
L.L. Soares-Neto ◽  
...  

ABSTRACT Pulmonary adenocarcinoma is a malignant epithelial neoplasia that usually arises from conducting airways or alveolar parenchyma. It has rarely been described in wild felids, with no previous reports in ocelots. In domestic cats it is a very aggressive neoplasm with a high metastatic rate that usually evolves to death. This report aimed to describe a pulmonary adenocarcinoma in a captive and senile ocelot (Leopardus pardalis), with a thorough morphologic and immunophenotypically characterization, evidencing the epithelial-mesenchymal transition (EMT) phenomenon in a high metastatic carcinoma, an important feature rarely described in veterinary medicine, even in domestic cats.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ahmad Nadzri Nur-Farahiyah ◽  
Kiven Kumar ◽  
Abd Rahaman Yasmin ◽  
Abdul Rahman Omar ◽  
Siti Nazrina Camalxaman

Naïve Felidae in the wild may harbor infectious viruses of importance due to cross-species transmission between the domesticated animals or human–wildlife contact. However, limited information is available on virus shedding or viremia in the captive wild felids, especially in Malaysia. Four infectious viruses of cat, feline herpesvirus (FHV), feline calicivirus (FCV), canine distemper virus (CDV), and canine parvovirus (CPV), were screened in leopards, feral cats, and tigers in Malaysia based on virus isolation in Crandell-Rees feline kidney (CRFK) cells, PCR/RT-PCR, and whole-genome sequencing analysis of the positive isolate. From a total of 36 sera collected, 11 samples showed three consecutive cytopathic effects in the cell culture and were subjected to PCR using specific primers for FHV, FCV, CDV, and CPV. Only one sample from a Malayan tiger was detected positive for CPV. The entire viral genome of CPV (UPM-CPV15/P. tigris jacksoni; GenBank Accession number MW380384) was amplified using the Sanger sequencing approach. Genome sequencing of the isolate revealed 99.13, 98.65, and 98.40% close similarity to CPV-31, CPV-d Cornell #320, and CPV-15 strains, respectively, and classified as CPV-2a. Time-scaled Bayesian Maximum Clade Credibility tree for the non-structural (NS) genes of CPV showed a close relationship to the isolates CPV-CN SD6_2014 and KSU7-SD_2004 from China and USA, respectively, while the capsid gene showed the same ancestor as the FPV-BJ04 strain from China. The higher evolution rate of the capsid protein (CP) (VP 1 and VP2) [1.649 × 10−5 (95% HPD: 7.626 × 10−3 to 7.440 × 10−3)] as compared to the NS gene [1.203 × 10−4 (95% HPD: 6.663 × 10−3 to 6.593 × 10−3)] was observed in the CPV from this study, and fairly higher than other parvovirus species from the Protoparvovirus genus. Genome sequencing of the isolated CPV from a Malayan tiger in the present study provides valuable information about the genomic characteristics of captive wild felids, which may add information on the presence of CPV in species other than dogs.


2021 ◽  
Vol 9 (7) ◽  
pp. 1474
Author(s):  
Luciana Cătălina Panait ◽  
Kristýna Hrazdilová ◽  
Angela Monica Ionică ◽  
Georgiana Deak ◽  
Gabriel Bogdan Chişamera ◽  
...  

Haemoparasites of the genus Babesia infect a wide range of domestic and wild animals. Feline babesiosis is considered endemic in South Africa, while data on Babesia spp. infection in felids in Europe is scarce. Using samples from 51 wild felids, 44 Felis silvestris and 7 Lynx lynx, the study aimed to determine the presence and genetic diversity of Babesia spp. in wild felids in Romania by analyzing the 18S rDNA and two mitochondrial markers, cytochrome b (Cytb) and cytochrome c oxidase subunit I (COI) genes. By 18S rDNA analyses, Babesia spp. DNA was detected in 20 European wild felids. All sequences showed 100% similarity to B. canis by BLAST analysis. Conversely, Cytb and COI analyses revealed the presence of two Babesia spp., B. pisicii n. sp., which we herein describe, and B. canis. The pairwise comparison of both mitochondrial genes of B. pisicii n. sp. showed a genetic distance of at least 10.3% from the most closely related species, B. rossi. Phylogenetic analyses of Cytb and COI genes revealed that B. pisicii n. sp. is related to the so-called “large” canid-associated Babesia species forming a separate subclade in a sister position to B. rossi.


2021 ◽  
Vol 12 (4) ◽  
pp. 101706
Author(s):  
Ugo Araújo Souza ◽  
Anelise Webster ◽  
Bruno Dall’Agnol ◽  
Felipe Bortolotto Peters ◽  
Marina Ochoa Favarini ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1853
Author(s):  
Benjamin L. Hart ◽  
Lynette A. Hart ◽  
Abigail P. Thigpen ◽  
Neil H. Willits

Plant eating by domestic cats is of interest to veterinarians and cat owners, especially with the current trend to keep cats totally indoors. Feline grass gardens are commonly provided to such cats as a reflection of cat owners believing in the need or desire of cats for eating plants. Two surveys with 1000 to 2000 returns from cat owners were launched over 10 years to test different hypotheses regarding plant eating. These hypotheses are that plant eating: (1) is a response to the cat feeling ill; (2) induces vomiting; (3) is a means of expelling hair balls from consumed hair. Additionally, a perspective acquired from observations of wild felids is that plant eating reflects an innate predisposition acquired from the ancestral cat. In this study, very few cats showed signs of illness before eating plants. However, 27 to 37 percent of cats, respectively in the two surveys, frequently vomited after eating plants, indicating that gastrointestinal disturbance may be related to vomiting in some cats. Young cats consumed plants more frequently than older cats and appeared ill and vomited less frequently in association with plant eating. Short-haired cats ate plants as frequently as long-haired cats, arguing against the hairball expelling hypothesis. Some guidelines for cat owners with indoor cats are provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kareem Hatam-Nahavandi ◽  
Rafael Calero-Bernal ◽  
Mohammad Taghi Rahimi ◽  
Abdol Sattar Pagheh ◽  
Mehdi Zarean ◽  
...  

AbstractFelidae as definitive hosts for Toxoplasma gondii play a major role in transmission to all warm-blooded animals trough oocysts dissemination. Therefore the current comprehensive study was performed to determine the global status of T. gondii infection in domestic and wild felids aiming to provide comprehensive data of interest for further intervention approaching the One Health perspective. Different databases were searched by utilizing particular key words for publications related to T. gondii infecting domestic and wild feline host species, worldwide, from 1970 to 2020. The review of 337 reports showed that the seroprevalence of T. gondii in domestic cats and wild felids was estimated in 37.5% (95% CI 34.7–40.3) (I2 = 98.3%, P < 0.001) and 64% (95% CI 60–67.9) (I2 = 88%, P < 0.0001), respectively. The global pooled prevalence of oocysts in the fecal examined specimens from domestic cats was estimated in 2.6% (95% CI 1.9–3.3) (I2 = 96.1%, P < 0.0001), and that in fecal samples from wild felids was estimated in 2.4% (95% CI 1.1–4.2) (I2 = 86.4%, P < 0.0001). In addition, from 13,252 examined soil samples in 14 reviewed studies, the pooled occurrence of T. gondii oocysts was determined in 16.2% (95% CI 7.66–27.03%). The observed high rates of anti-T. gondii antibodies seroprevalence levels and oocyst excretion frequency in the felids, along with soil (environmental) contamination with oocysts may constitute a potential threat to animal and public health, and data will result of interest in further prophylaxis programs.


Sign in / Sign up

Export Citation Format

Share Document