Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador

2008 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Jens Illig ◽  
Heinrich Schatz ◽  
Stefan Scheu ◽  
Mark Maraun

Abstract:The decomposition of litter of two tree species Graffenrieda emarginata (Melastomataceae), Purdiaea nutans (Cyrillaceae) and the mixture of both was investigated in a tropical montane rain forest in southern Ecuador at two different altitudes (1850 and 2280 m). The two litter types differed strongly in nitrogen concentration, suggesting that G. emarginata (1.21% N) decomposes faster than P. nutans (0.73% N). To study the effect of soil micro-arthropods on the decomposition process, litterbags with mesh-size of 48 μm, excluding soil micro-arthropods, and 1 mm, allowing colonization by soil micro-arthropods, were used. Litter mass loss was measured after 2, 6 and 12 mo exposure in the field; further, microbial biomass and micro-arthropod colonization of the litter were investigated after 2 and 12 mo. Generally, litter decomposed faster at 1850 m than at 2280 m (60% and 76% dry mass remaining after 12 mo, respectively); G. emarginata and mixed litter decomposed faster than P. nutans litter. After 12 mo mixed litter decomposed faster (65% of dry mass remaining) than both individual litter species (70% and 71% of dry mass of G. emarginata and P. nutans litter remaining, respectively) indicating that non-additive effects contributed to litter decomposition. Microbial biomass increased during the experiment and was higher at 1850 m than at 2280 m. The most abundant micro-arthropods in both litter types were oribatid mites followed by Collembola, Gamasina, Uropodina and Prostigmata + Astigmata. Micro-arthropods were generally more abundant at 1850 m suggesting higher biotic activity at lower altitudes. Soil micro-arthropods contributed little to decomposition processes indicating that litter decomposition is mainly due to micro-organisms.

Plant Biology ◽  
2003 ◽  
Vol 5 (3) ◽  
pp. 331-337 ◽  
Author(s):  
C. Dziedzioch ◽  
A.-D. Stevens ◽  
G. Gottsberger

2011 ◽  
pp. 447-455 ◽  
Author(s):  
T. Motzer ◽  
N. Munz ◽  
D. Anhuf ◽  
M. Küppers ◽  
L. A. Bruijnzeel ◽  
...  

2008 ◽  
Vol 18 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Jens-Christian Svenning ◽  
Dorthea Harlev ◽  
Marianne Moesgaard Sørensen ◽  
Henrik Balslev

2008 ◽  
Vol 24 (3) ◽  
pp. 247-258 ◽  
Author(s):  
Sven Günter ◽  
Bernd Stimm ◽  
Manuel Cabrera ◽  
Maria Luisa Diaz ◽  
Manuel Lojan ◽  
...  

Abstract:We investigated the effect of seasonality on tree phenology in the tropical montane rain forest of southern Ecuador and analysed possible triggering factors. Two hypotheses were tested: (1) Interspecific synchronization of flowering and fruiting phenology is higher at study sites with pronounced rainfall seasonality compared with sites within perhumid forests. (2) Proximate causes for flowering in closely situated seasonal and perhumid sites are either photoperiodicity or climatic factors. Two nearby study sites with contrasting precipitation patterns were selected at the same altitude east and west of the western Cordillera. Eighty trees from 13 species were observed over a 2.5-y period. Three species were common to both study sites. Phenological and climate data were collected and cross-correlated by conducting a time-series analysis. At the perhumid site, very clear annual patterns of phenological behaviour could be observed for most of the selected rain-forest tree species, but with a poor interspecific synchronization. On the nearby seasonal site in contrast, most species showed high synchrony in their phenological behaviour coinciding with the dry season. There is strong evidence that flowering is induced not by one factor alone: we identified photoperiodic control, radiation and precipitation as possible proximate causes for both sites. Our results confirm studies which state that these factors are closely linked to each other in the tropics.


2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.


2019 ◽  
Vol 31 ◽  
Author(s):  
Renan de Souza Rezende ◽  
Cristiano Queiroz de Albuquerque ◽  
Andrezza Sayuri Victoriano Hirota ◽  
Paulo Fernandes Roges Souza Silva ◽  
Ricardo Keichi Umetsu ◽  
...  

Abstract Aim Wildfire is a natural pulsed disturbance in landscapes of the Savannah Biome. This study evaluates short-term post-fire effects on leaf litter breakdown, the invertebrate community and fungal biomass of litter from three different vegetal species in a tropical stream. Methods Senescent leaves of Inga laurina, Protium spruceanum and Rircheria grandis (2 ± 0.1 g dry mass) were individually placed in litter bags (30 × 30 cm: 10 mm coarse mesh and 0.5 mm fine mesh) and submerged in the study stream before and after fire. Replicate bags (n = 4; individually for each species, sampling time, fire event and mesh size) were then retrieved after 20 and 40 days and washed to separate the invertebrates before fire event and again immediately after fire. Disks were cut from leaves to determine ash-free dry mass, while the remaining material was oven-dried to determine dry mass. Results The pre-fire mean decomposition coefficient (k = -0.012 day-1) was intermediate compared to that reported for other savannah streams, but post-fire it was lower (k = -0.007 day-1), due to decreased allochthonous litter input and increased autochthones production. Intermediate k values for all qualities of litter post-fire may indicate that fire is equalizing litter quality in the stream ecosystem. The abundance of scrapers was found to be more important than fungal biomass or shredder abundance, probably due to their functioning in leaf fragmentation while consuming periphyton growing on leaf litter. Conclusions Theses results indicate that fire can modify the relationships within decomposer communities in tropical stream ecosystems.


Sign in / Sign up

Export Citation Format

Share Document