Herbaceous monocot plant form and function along a tropical rain-forest light gradient: a reversal of dicot strategy

2009 ◽  
Vol 25 (1) ◽  
pp. 103-106 ◽  
Author(s):  
Nathan G. Swenson

Whole plant form and function vary spectacularly across the seed plants. In recent years, plant evolutionary ecologists have begun to document this diversity on large geographic scales by analysing ‘functional traits’ that are indicative of whole plant performance across environmental gradients (Swenson & Enquist 2007, Wright et al. 2004). Despite the high degree of functional diversity in tropical forests, convergence in function does occur locally along successional or light gradients (Bazzaz & Pickett 1980, Swaine & Whitmore 1988).

1997 ◽  
Vol 22 (3) ◽  
pp. 592
Author(s):  
Henrik Balslev ◽  
Philip W. Rundel ◽  
Alan P. Smith ◽  
F. C. Meinzer

2021 ◽  
Vol 11 (4) ◽  
pp. 1526-1534
Author(s):  
Jules Segrestin ◽  
Kevin Sartori ◽  
Marie‐Laure Navas ◽  
Jens Kattge ◽  
Sandra Díaz ◽  
...  

Author(s):  
Karl J Niklas ◽  
Frank W Telewski

Abstract Abiotic–biotic interactions have shaped organic evolution since life first began. Abiotic factors influence growth, survival, and reproductive success, whereas biotic responses to abiotic factors have changed the physical environment (and indeed created new environments). This reciprocity is well illustrated by land plants who begin and end their existence in the same location while growing in size over the course of years or even millennia, during which environment factors change over many orders of magnitude. A biomechanical, ecological, and evolutionary perspective reveals that plants are (i) composed of materials (cells and tissues) that function as cellular solids (i.e. materials composed of one or more solid and fluid phases); (ii) that have evolved greater rigidity (as a consequence of chemical and structural changes in their solid phases); (iii) allowing for increases in body size and (iv) permitting acclimation to more physiologically and ecologically diverse and challenging habitats; which (v) have profoundly altered biotic as well as abiotic environmental factors (e.g. the creation of soils, carbon sequestration, and water cycles). A critical component of this evolutionary innovation is the extent to which mechanical perturbations have shaped plant form and function and how form and function have shaped ecological dynamics over the course of evolution.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Iker Irisarri ◽  
Tatyana Darienko ◽  
Thomas Pröschold ◽  
Janine M. R. Fürst-Jansen ◽  
Mahwash Jamy ◽  
...  

Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.


1995 ◽  
Vol 83 (3) ◽  
pp. 555
Author(s):  
J. C. Lovett ◽  
P. W. Rundel ◽  
A. P. Smith ◽  
F. C. Meinzer

Author(s):  
Nandan K. Nerurkar ◽  
Sounok Sen ◽  
Emily E. Wible ◽  
Jeffrey B. Stambough ◽  
Dawn M. Elliott ◽  
...  

The annulus fibrosus (AF) of the intervertebral disc is a multi-lamellar fibrocartilage that, together with the nucleus pulposus, confers mechanical support and flexibility to the spine. Function of the AF is predicated on a high degree of structural organization over multiple length scales: aligned collagen fibers reside within each lamella, and the direction of alignment alternates between adjacent lamellae from +30° to −30° with respect to the transverse axis of the spine. Electrospinning permits fabrication of scaffolds consisting of aligned arrays of nanofibers, and has proven effective for directing the alignment of both cells and extracellular matrix (ECM) deposition [1–3]. We recently employed electrospinning to engineer the primary functional unit of the AF, a single lamella [4]. However, it remains a challenge to engineer a multi-lamellar tissue that replicates the cross-ply fiber architecture of the native AF. Moreover, relatively few studies have considered functional properties of engineered AF, and, when measured, tensile properties of these constructs have been inferior to native AF [4]. In this study, mesenchymal stem cells (MSCs) were seeded onto aligned nanofibrous scaffolds organized into bi-lamellar constructs with opposing or parallel fiber orientations, and their functional maturation was evaluated with time. Additionally, we determined a novel role for inter-lamellar ECM in reinforcing the tensile response of bilayers, and confirmed this mechanism by testing acellular bilayers with controllable interface properties.


Sign in / Sign up

Export Citation Format

Share Document