Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia

2009 ◽  
Vol 25 (4) ◽  
pp. 371-386 ◽  
Author(s):  
Tanaka Kenzo ◽  
Tomoaki Ichie ◽  
Daisuke Hattori ◽  
Takao Itioka ◽  
Chihiro Handa ◽  
...  

Abstract:We developed allometric relationships between tree size parameters (stem diameter at breast height (dbh), at ground surface (D0) and tree height) and leaf, stem, small-root (diameter <5 mm) and total root biomass in various tropical secondary-forest trees in Sarawak, Malaysia. In total, 136 individuals from 23 species were harvested to measure above-ground parts. Root systems of 77 individuals of 16 species were also excavated. The coefficients of correlation for the obtained allometric relationships between tree diameter and plant-part biomass showed high values, ranging from 0.83 to 0.99. In addition, there were few interspecific differences in relationships for all biomass parts, except for leaves. We also found relatively high coefficients of allometric relationships between tree height and plant-part biomass ranging from 0.83 to 0.94. Comparison of above- and below-ground biomass equations for various tropical rainforests implies that our allometric equations differ largely from the equations for tropical primary forests. Thus, choosing both above- and below-ground allometric equations for biomass estimation in tropical secondary forests of South-East Asia requires careful consideration of their suitability.

Author(s):  
Mamadou Laminou Mal Amadou ◽  
Halilou Ahmadou ◽  
Ahmadou Ibrahim ◽  
Tchindebe Alexandre ◽  
Massai Tchima Jacob ◽  
...  

Little information on allometric relationships for estimating stand biomass in the savannah of Cameroon was available. Allometric relationships for estimating stand biomass were investigated in the sudano-guinea savannah of Ngaoundere, Cameroon. A total of 90 individual woody from sixteen (16) contrasting plant species belonging shrubs and trees were harvested in Dang savannah across a range of diameter classes, from 3 to 35 cm. Basal diameter (D), total height (H) and tree density were determined and considered as predictor variables, while total above-ground biomass, stem, branch and leaf biomass were the output variables of the allometric models. Among many models tested, the best ones were chosen according to the coefficient of determination adjusted (R2adj), the residual standard error (RSE) and the Akaike Information Criteria. The main results showed that the integration of tree height and density with basal diameter improved in the degree of fitness of the allometric equations. The fit allometric stand biomass model for leaf, branch, stem and above ground biomass were the following forms: Ln(LB) = -5.08 + 2.75*Ln(D) – 0.30*Ln(D2Hρ); Ln(BB) = -7.81 + 1.29*Ln(D2H) – 0.39*Ln(ρ); Ln(SB) = -5.08 + 2.40*Ln(D) +0.50*Ln(H) and Ln(TB) = -5.07 + 3.21*Ln(D) – 0.12*Ln(D2Hρ) respectively. It is concluded that the use of tree height and density in the allometric equation can be improved for these species, as far as the present study area is concerned. Therefore, for estimating the biomass of shrubs and small trees, the use of basal diameter as an independent variable in the allometric equation with a power equation would be recommended in the Sudano-guinea savannahs of Ngaoundere, Cameroon. The paper describes details of shrub biomass allometry, which is important in carbon stock and savannah management for the environmental protection.


2019 ◽  
Vol 20 (9) ◽  
Author(s):  
Karyati Karyati ◽  
ISA B. IPOR ◽  
ISMAIL JUSOH ◽  
MOHD. EFFENDI WASLI

Abstract. Karyati, Ipor IB, Jusoh I, Wasli ME. 2019. Allometric equations to estimate the above-ground biomass of trees in the tropical secondary forests of different ages. Biodiversitas 20: 2427-2436. The allometric equations for trees of secondary forests of different ages in abandoned lands after shifting cultivation are still rarely available. The objective of this study was to develop allometric equations to estimate the above-ground biomass (AGB) of trees (DBH of > 5 cm) in the tropical secondary forest of different ages, namely 5, 10, and 20 years after abandonment. The selected trees in this study represented the dominant and rare species and DBH classes in each study site. The trunk dry biomass and AGB showed strong correlations (adjusted R2= 0.59-0.95) with diameter at breast height (DBH) and height. The leaf and branch dry biomass had weak correlations with height (adjusted R2=0.36-0.50). The developed allometric equations were suitable for trees of secondary forests of different ages, because the selected samples used in the destructive method were based on a field inventory data of forest structure and floristic composition.


2009 ◽  
Vol 14 (6) ◽  
pp. 365-372 ◽  
Author(s):  
Tanaka Kenzo ◽  
Ryo Furutani ◽  
Daisuke Hattori ◽  
Joseph Jawa Kendawang ◽  
Sota Tanaka ◽  
...  

2012 ◽  
Vol 45 ◽  
pp. 1-10 ◽  
Author(s):  
Ramarson H. Razakamanarivo ◽  
Ando Razakavololona ◽  
Marie-Antoinette Razafindrakoto ◽  
Ghislain Vieilledent ◽  
Alain Albrecht

2000 ◽  
Vol 48 (6) ◽  
pp. 707 ◽  
Author(s):  
W. H. Burrows ◽  
M. B. Hoffmann ◽  
J. F. Compton ◽  
P. V. Back ◽  
L. J. Tait

Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations.


Author(s):  
Tatiana Stankova ◽  
Veselka Gyuleva ◽  
Dimitar Dimitrov ◽  
Hristina Hristova ◽  
Ekaterina Andonova

Species of the genus Paulownia have been introduced to Bulgaria since the beginning of the XXthcentury and their multipurpose uses - as ornamental trees, for wood and biomass production- have been tested ever since. We present a study, which examines the early growth of four Paulowniaclones at southern locations in Bulgaria and derives biometric models for dendromass estimationof juvenile Paulownia trees.The data originated from two experimental plantations established on nursery land using one-yearoldin vitro propagated plant material. Forty six, 1 to 3 year-old saplings from two clones of P. tomentosaand two P. elongata × P. fortunei hybrids were sampled. Their stem biomass was modeledas a function of the breast height tree diameter and total tree height or the stem diameter aloneand a set of goodness-of-fit criteria was applied to select the most adequate among the 29 testedformulations. The regression models were fitted in log-transformed form to the logarithm of thestem biomass and MM correction factor for bias was applied to the back-transformed predictiondata. Two allometric relationships were derived, which adequately assess stem dendromass ofyoung Paulownia sp. from easily measurable tree characteristics. Both models are applicable forstem biomass estimation of juvenile Paulownia trees of diameter up to 5 cm and total height upto 3.5 m.


2020 ◽  
Vol 5 (4) ◽  
pp. 525-529
Author(s):  
Basuki Wasis ◽  
Bambang Hero Saharjo ◽  
Dadan Mulyana ◽  
Atikah ◽  
Wardana

Forest and land fires will lead to the loss of forest ecosystems, loss of forest biomass and the sustainability of forests. After the event of fire whether an ecosystem will improve the forest and its environment. The study is intended to calculate biomass and carbon stocks in secondary natural forests that burn after 10 years and determine the model of biomass estimation and carbon stocks in secondary forests that burn after 10 years. This research was conducted on burnt peatlands in the Ex Million ha of Central Kalimantan Province of Indonesia. The research method used is the analysis of vegetation and destructive sampling on forest biomass that grows on burning peatlands. The result showed that biomass content of secondary natural forest formed after peat burns > 10 years in 466.2 ton / ha of and carbon content of 264.4 ton / ha. The estimation of biomass in secondary natural forest formed after peat burn> 10 years log is B = - 0.127 + 1.83 log D (B = 0.746 D 1.83) R2 : 87.5 % and carbon estimation is log K = - 0.506 + 1.92 log D (K = 0.312 D 1.92) R2: 85.7 %.  In the location of the burnt peat swamp forest there has been a succession of secondary forest and the equation model obtained in the study can be used to estimate biomass and carbon content.


Author(s):  
Jacob I. Levine ◽  
Perry de Valpine ◽  
John J. Battles

Accurate estimation of forest biomass is important for scientists and policymakers interested in carbon accounting, nutrient cycling, and forest resilience. Estimates often rely on the allometry of trees; however, limited datasets, uncertainty in model form, and unaccounted for sources of variation warrant a re-examination of allometric relationships using modern statistical techniques. We asked the following questions: (1) Is there among-stand variation in allometric relationships? (2) Is there nonlinearity in allometric relationships? (3) Can among-stand variation or nonlinearities in allometric equations be attributed to differences in stand age? (4) What are the implications for biomass estimation? To answer these questions, we synthesized a dataset of small trees from six different studies in the White Mountains of New Hampshire. We compared the performance of generalized additive models (GAMs) and linear models and found that GAMs consistently outperform linear models. The best-fitting model indicates that allometries vary among both stands and species and contain subtle nonlinearities which are themselves variable by species. Using a planned contrasts analysis, we were able to attribute some of the observed among-stand heterogeneity to differences in stand age. However, variability in these results point to additional sources of stand-level heterogeneity, which if identified could improve the accuracy of live-tree biomass estimation.


Sign in / Sign up

Export Citation Format

Share Document