Introspective Q-learning and learning from demonstration

2019 ◽  
Vol 34 ◽  
Author(s):  
Mao Li ◽  
Tim Brys ◽  
Daniel Kudenko

Abstract One challenge faced by reinforcement learning (RL) agents is that in many environments the reward signal is sparse, leading to slow improvement of the agent’s performance in early learning episodes. Potential-based reward shaping can help to resolve the aforementioned issue of sparse reward by incorporating an expert’s domain knowledge into the learning through a potential function. Past work on reinforcement learning from demonstration (RLfD) directly mapped (sub-optimal) human expert demonstration to a potential function, which can speed up RL. In this paper we propose an introspective RL agent that significantly further speeds up the learning. An introspective RL agent records its state–action decisions and experience during learning in a priority queue. Good quality decisions, according to a Monte Carlo estimation, will be kept in the queue, while poorer decisions will be rejected. The queue is then used as demonstration to speed up RL via reward shaping. A human expert’s demonstration can be used to initialize the priority queue before the learning process starts. Experimental validation in the 4-dimensional CartPole domain and the 27-dimensional Super Mario AI domain shows that our approach significantly outperforms non-introspective RL and state-of-the-art approaches in RLfD in both domains.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiali Li ◽  
Zhengyu Lv ◽  
Licheng Wu ◽  
Yue Zhao ◽  
Xiaona Xu

In this study, hybrid state-action-reward-state-action (SARSAλ) and Q-learning algorithms are applied to different stages of an upper confidence bound applied to tree search for Tibetan Jiu chess. Q-learning is also used to update all the nodes on the search path when each game ends. A learning strategy that uses SARSAλ and Q-learning algorithms combining domain knowledge for a feedback function for layout and battle stages is proposed. An improved deep neural network based on ResNet18 is used for self-play training. Experimental results show that hybrid online and offline reinforcement learning with a deep neural network can improve the game program’s learning efficiency and understanding ability for Tibetan Jiu chess.


Author(s):  
Abdelghafour Harraz ◽  
Mostapha Zbakh

Artificial Intelligence allows to create engines that are able to explore, learn environments and therefore create policies that permit to control them in real time with no human intervention. It can be applied, through its Reinforcement Learning techniques component, using frameworks such as temporal differences, State-Action-Reward-State-Action (SARSA), Q Learning to name a few, to systems that are be perceived as a Markov Decision Process, this opens door in front of applying Reinforcement Learning to Cloud Load Balancing to be able to dispatch load dynamically to a given Cloud System. The authors will describe different techniques that can used to implement a Reinforcement Learning based engine in a cloud system.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1685 ◽  
Author(s):  
Chayoung Kim

Owing to the complexity involved in training an agent in a real-time environment, e.g., using the Internet of Things (IoT), reinforcement learning (RL) using a deep neural network, i.e., deep reinforcement learning (DRL) has been widely adopted on an online basis without prior knowledge and complicated reward functions. DRL can handle a symmetrical balance between bias and variance—this indicates that the RL agents are competently trained in real-world applications. The approach of the proposed model considers the combinations of basic RL algorithms with online and offline use based on the empirical balances of bias–variance. Therefore, we exploited the balance between the offline Monte Carlo (MC) technique and online temporal difference (TD) with on-policy (state-action–reward-state-action, Sarsa) and an off-policy (Q-learning) in terms of a DRL. The proposed balance of MC (offline) and TD (online) use, which is simple and applicable without a well-designed reward, is suitable for real-time online learning. We demonstrated that, for a simple control task, the balance between online and offline use without an on- and off-policy shows satisfactory results. However, in complex tasks, the results clearly indicate the effectiveness of the combined method in improving the convergence speed and performance in a deep Q-network.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 231 ◽  
Author(s):  
Panagiotis Kofinas ◽  
Anastasios I. Dounis

This paper proposes a hybrid Zeigler-Nichols (Z-N) fuzzy reinforcement learning MAS (Multi-Agent System) approach for online tuning of a Proportional Integral Derivative (PID) controller in order to control the flow rate of a desalination unit. The PID gains are set by the Z-N method and then are adapted online through the fuzzy Q-learning MAS. The fuzzy Q-learning is introduced in each agent in order to confront with the continuous state-action space. The global state of the MAS is defined by the value of the error and the derivative of error. The MAS consists of three agents and the output signal of each agent defines the percentage change of each gain. The increment or the reduction of each gain can be in the range of 0% to 100% of its initial value. The simulation results highlight the performance of the suggested hybrid control strategy through comparison with the conventional PID controller tuned by Z-N.


Author(s):  
Atsushi Wada ◽  
◽  
Keiki Takadama ◽  
◽  

Learning Classifier Systems (LCSs) are rule-based adaptive systems that have both Reinforcement Learning (RL) and rule-discovery mechanisms for effective and practical on-line learning. With the aim of establishing a common theoretical basis between LCSs and RL algorithms to share each field's findings, a detailed analysis was performed to compare the learning processes of these two approaches. Based on our previous work on deriving an equivalence between the Zeroth-level Classifier System (ZCS) and Q-learning with Function Approximation (FA), this paper extends the analysis to the influence of actually applying the conditions for this equivalence. Comparative experiments have revealed interesting implications: (1) ZCS's original parameter, the deduction rate, plays a role in stabilizing the action selection, but (2) from the Reinforcement Learning perspective, such a process inhibits the ability to accurately estimate values for the entire state-action space, thus limiting the performance of ZCS in problems requiring accurate value estimation.


2016 ◽  
Vol 31 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Sam Devlin ◽  
Daniel Kudenko

AbstractRecent theoretical results have justified the use of potential-based reward shaping as a way to improve the performance of multi-agent reinforcement learning (MARL). However, the question remains of how to generate a useful potential function.Previous research demonstrated the use of STRIPS operator knowledge to automatically generate a potential function for single-agent reinforcement learning. Following up on this work, we investigate the use of STRIPS planning knowledge in the context of MARL.Our results show that a potential function based on joint or individual plan knowledge can significantly improve MARL performance compared with no shaping. In addition, we investigate the limitations of individual plan knowledge as a source of reward shaping in cases where the combination of individual agent plans causes conflict.


2020 ◽  
Vol 17 (2) ◽  
pp. 647-664
Author(s):  
Yangyang Ge ◽  
Fei Zhu ◽  
Wei Huang ◽  
Peiyao Zhao ◽  
Quan Liu

Multi-Agent system has broad application in real world, whose security performance, however, is barely considered. Reinforcement learning is one of the most important methods to resolve Multi-Agent problems. At present, certain progress has been made in applying Multi-Agent reinforcement learning to robot system, man-machine match, and automatic, etc. However, in the above area, an agent may fall into unsafe states where the agent may find it difficult to bypass obstacles, to receive information from other agents and so on. Ensuring the safety of Multi-Agent system is of great importance in the above areas where an agent may fall into dangerous states that are irreversible, causing great damage. To solve the safety problem, in this paper we introduce a Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game. In this method, safety constraints are added to the set of actions, and each agent, when interacting with the environment to search for optimal values, should be restricted by the safety rules, so as to obtain an optimal policy that satisfies the security requirements. Since traditional Multi-Agent reinforcement learning algorithm is no more suitable for the proposed model in this paper, a new solution is introduced for calculating the global optimum state-action function that satisfies the safety constraints. We take advantage of the Lagrange multiplier method to determine the optimal action that can be performed in the current state based on the premise of linearizing constraint functions, under conditions that the state-action function and the constraint function are both differentiable, which not only improves the efficiency and accuracy of the algorithm, but also guarantees to obtain the global optimal solution. The experiments verify the effectiveness of the algorithm.


Author(s):  
Alberto Camacho ◽  
Rodrigo Toro Icarte ◽  
Toryn Q. Klassen ◽  
Richard Valenzano ◽  
Sheila A. McIlraith

In Reinforcement Learning (RL), an agent is guided by the rewards it receives from the reward function. Unfortunately, it may take many interactions with the environment to learn from sparse rewards, and it can be challenging to specify reward functions that reflect complex reward-worthy behavior. We propose using reward machines (RMs), which are automata-based representations that expose reward function structure, as a normal form representation for reward functions. We show how specifications of reward in various formal languages, including LTL and other regular languages, can be automatically translated into RMs, easing the burden of complex reward function specification. We then show how the exposed structure of the reward function can be exploited by tailored q-learning algorithms and automated reward shaping techniques in order to improve the sample efficiency of reinforcement learning methods. Experiments show that these RM-tailored techniques significantly outperform state-of-the-art (deep) RL algorithms, solving problems that otherwise cannot reasonably be solved by existing approaches.


Author(s):  
Ariel Rosenfeld ◽  
Moshe Cohen ◽  
Matthew E. Taylor ◽  
Sarit Kraus

AbstractReinforcement learning (RL) can be extremely effective in solving complex, real-world problems. However, injecting human knowledge into an RL agent may require extensive effort and expertise on the human designer’s part. To date, human factors are generally not considered in the development and evaluation of possible RL approaches. In this article, we set out to investigate how different methods for injecting human knowledge are applied, in practice, by human designers of varying levels of knowledge and skill. We perform the first empirical evaluation of several methods, including a newly proposed method named State Action Similarity Solutions (SASS) which is based on the notion of similarities in the agent’s state–action space. Through this human study, consisting of 51 human participants, we shed new light on the human factors that play a key role in RL. We find that the classical reward shaping technique seems to be the most natural method for most designers, both expert and non-expert, to speed up RL. However, we further find that our proposed method SASS can be effectively and efficiently combined with reward shaping, and provides a beneficial alternative to using only a single-speedup method with minimal human designer effort overhead.


Author(s):  
Masaya Nakata ◽  
◽  
Tomoki Hamagami

The XCS classifier system is an evolutionary rule-based learning technique powered by a Q-learning like learning mechanism. It employs a global deletion scheme to delete rules from all rules covering all state-action pairs. However, the optimality of this scheme remains unclear owing to the lack of intensive analysis. We here introduce two deletion schemes: 1) local deletion, which can be applied to a subset of rules covering each state (a match set), and 2) stronger local deletion, which can be applied to a more specific subset covering each state-action pair (an action set). The aim of this paper is to reveal how the above three deletion schemes affect the performance of XCS. Our analysis shows that the local deletion schemes promote the elimination of inaccurate rules compared with the global deletion scheme. However, the stronger local deletion scheme occasionally deletes a good rule. We further show that the two local deletion schemes greatly improve the performance of XCS on a set of noisy maze problems. Although the localization strength of the proposed deletion schemes may require consideration, they can be adequate for XCS rather than the original global deletion scheme.


Sign in / Sign up

Export Citation Format

Share Document