VARIABILITY FOR CARRIER-BORNE EPIDEMICS AND REED–FROST MODELS INCORPORATING UNCERTAINTIES AND DEPENDENCIES FROM SUSCEPTIBLES AND INFECTIVES

2010 ◽  
Vol 24 (2) ◽  
pp. 303-328 ◽  
Author(s):  
Eva María Ortega ◽  
Laureano F. Escudero

This article provides analytical results on which are the implications of the statistical dependencies among certain random parameters on the variability of the number of susceptibles of the carrier-borne epidemic model with heterogeneous populations and of the number of infectives under the Reed–Frost model with random infection rates. We consider dependencies among the random infection rates, among the random infectious times, and among random initial susceptibles of several carrier-borne epidemic models. We obtain conditions for the variability ordering between the number of susceptibles for carrier-borne epidemics under two different random environments, at any time-scale value. These results are extended to multivariate comparisons of the random vectors of populations in the strata. We also obtain conditions for the increasing concave order between the number of infectives in the Reed–Frost model under two different random environments, for any generation. Variability bounds are obtained for different epidemic models from modeling dependencies for a range of special cases that are useful for risk assessment of disease propagation.

1980 ◽  
Vol 17 (4) ◽  
pp. 912-921 ◽  
Author(s):  
Ray Watson

We consider the standard epidemic model and several extensions of this model, including Downton's carrier-borne epidemic model. A random time-scale transformation is used to obtain equations for the size distribution and to derive asymptotic approximations for the size distribution for each of the models


2007 ◽  
Vol 44 (01) ◽  
pp. 41-57 ◽  
Author(s):  
Peter Neal

The variable generalised stochastic epidemic model, which allows for variability in both the susceptibilities and infectivities of individuals, is analysed. A very different epidemic model which exhibits variable susceptibility and infectivity is the random-graph epidemic model. A suitable coupling of the two epidemic models is derived which enables us to show that, whilst the epidemics are very different in appearance, they have the same asymptotic final size distribution. The coupling provides a novel approach to studying random-graph epidemic models.


2017 ◽  
Vol 54 (3) ◽  
pp. 905-920 ◽  
Author(s):  
Etienne Pardoux ◽  
Brice Samegni-Kepgnou

Abstract We consider a general class of epidemic models obtained by applying the random time changes of Ethier and Kurtz (2005) to a collection of Poisson processes and we show the large deviation principle for such models. We generalise the approach followed by Dolgoarshinnykh (2009) in the case of the SIR epidemic model. Thanks to an additional assumption which is satisfied in many examples, we simplify the recent work of Kratz and Pardoux (2017).


1980 ◽  
Vol 17 (04) ◽  
pp. 912-921 ◽  
Author(s):  
Ray Watson

We consider the standard epidemic model and several extensions of this model, including Downton's carrier-borne epidemic model. A random time-scale transformation is used to obtain equations for the size distribution and to derive asymptotic approximations for the size distribution for each of the models


1976 ◽  
Vol 13 (4) ◽  
pp. 652-661 ◽  
Author(s):  
Richard J. Kryscio ◽  
Roy Saunders

We establish a sufficient condition for which the expected area under the trajectory of the carrier process is directly proportional to the expected number of removed carriers in the class of carrier-borne, right-shift, epidemic models studied by Severo (1969a). This result generalizes the previous work of Downton (1972) and Jerwood (1974) for some special cases of these models. We use the result to compute expected costs in the carrier-borne model due to Downton (1968) when it is unlikely that all the susceptibles will be infected. We conclude by showing that for the special case considered by Weiss (1965) this treatment of the expected cost is reasonable for populations with a large initial number of susceptibles.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Elcio Lebensztayn

We propose two variants of a stochastic epidemic model in which the disease is spread by mobile particles performing random walks on the complete graph. For the first model, we study the effect on the epidemic size of an immunization mechanism that depends on the activity of the disease. In the second model, the transmission agents can gain lives at random during their existences. We prove limit theorems for the final outcome of these processes. The epidemic model with mutations exhibits phase transition, meaning that if the mutation parameter is sufficiently large, then asymptotically all the individuals in the population are infected.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Wang ◽  
Zhidong Teng ◽  
Long Zhang

We study a class of discrete SIRS epidemic models with nonlinear incidence rateF(S)G(I)and disease-induced mortality. By using analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic equilibrium is obtained. That is, if basic reproduction numberℛ0<1, then the disease-free equilibrium is globally asymptotically stable, and ifℛ0>1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that only whenℛ0>1, the disease in the model is permanent. Some special cases ofF(S)G(I)are discussed. Particularly, whenF(S)G(I)=βSI/(1+λI), it is obtained that the endemic equilibrium is globally asymptotically stable if and only ifℛ0>1. Furthermore, the numerical simulations show that for general incidence rateF(S)G(I)the endemic equilibrium may be globally asymptotically stable only asℛ0>1.


1994 ◽  
Vol 31 (3) ◽  
pp. 606-613 ◽  
Author(s):  
V. M. Abramov

This paper considers the asymptotic distribution of the maximum number of infectives in an epidemic model by showing that, as the initial number of susceptibles converges to infinity, the process of infectives converges almost surely to a birth and death process. The model studied here is more general than usual (see e.g. Bailey (1975), Bharucha-Reid (1960), Keilson (1979)) in that it incorporates immigration and the limiting birth and death process is non-linear. The main novelty of the present paper is the martingale approach used to prove the above-mentioned convergence.


1994 ◽  
Vol 31 (03) ◽  
pp. 606-613
Author(s):  
V. M. Abramov

This paper considers the asymptotic distribution of the maximum number of infectives in an epidemic model by showing that, as the initial number of susceptibles converges to infinity, the process of infectives converges almost surely to a birth and death process. The model studied here is more general than usual (see e.g. Bailey (1975), Bharucha-Reid (1960), Keilson (1979)) in that it incorporates immigration and the limiting birth and death process is non-linear. The main novelty of the present paper is the martingale approach used to prove the above-mentioned convergence.


Sign in / Sign up

Export Citation Format

Share Document