Biogeography of Modern Benthic Foraminifera

1982 ◽  
Vol 6 ◽  
pp. 90-106
Author(s):  
Martin A. Buzas ◽  
Stephen J. Culver

Biogeography is concerned with recording and explaining the distribution of organisms in space and time. In their search for patterns of distribution, biogeographers have classified the surface of the earth into a hierarchical scheme of ecological units (e.g. Kauffman and Scott, 1976). The basic biogeographic units are realms and provinces. A faunal realm is a large area about the size of a continent while provinces are subdivisions within a realm. An appreciation of the scale involved is gained by considering a current classification of the terrestial world (Udvardy, 1975) which contains 8 realms and 172 provinces.

1980 ◽  
Vol 36 (3) ◽  
pp. 66-69
Author(s):  
Stephen C. Morrison

The stethoscope and its use are described. A current classification of breath sounds, voice sounds and adventitious sounds is presented, and its use in diagnosis outlined. Finally, the value of auscultation to the physiotherapist is discussed.


1966 ◽  
Vol 28 (2) ◽  
pp. 111-113
Author(s):  
George S. Pappas

Author(s):  
Grigorii I. Nesmeyanov ◽  

The article formulates main questions related to the concept of context. The issue of context is considered as a current-day interdisciplinary field of research. There are many definitions of context in dictionaries and in various humanities (including scientific disciplines). In connection with that issue various methodological approaches arise in the humanities, which can be designated by the umbrella term “contextual”. By the example of one of such approaches to the sociological poetics of the “Bakhtin’s circle”, the author substantiates the possibility of creating an interdisciplinary classification of contextual approaches. That classification may include scientific developments of different years and research fields, including: philosophical hermeneutics, a number of approaches to the Russian and foreign literary theory (M.M. Bakhtin, Yu.M. Lotman, B.M. Eichenbaum, F. Moretti, A. Compagnon, etc.), intellectual history, discourse analysis, etc.


2021 ◽  
Vol 13 (15) ◽  
pp. 2909
Author(s):  
Chuanpeng Zhao ◽  
Cheng-Zhi Qin

Accurate large-area mangrove classification is a challenging task due to the complexity of mangroves, such as abundant species within the mangrove category, and various appearances resulting from a large latitudinal span and varied habitats. Existing studies have improved mangrove classifications by introducing time series images, constructing new indices sensitive to mangroves, and correcting classifications by empirical constraints and visual inspections. However, false positive misclassifications are still prevalent in current classification results before corrections, and the key reason for false positive misclassification in large-area mangrove classifications is unknown. To address this knowledge gap, a hypothesis that an inadequate classification scheme (i.e., the choice of categories) is the key reason for such false positive misclassification is proposed in this paper. To validate this hypothesis, new categories considering non-mangrove vegetation near water (i.e., within one pixel from water bodies) were introduced, which is inclined to be misclassified as mangroves, into a normally-used standard classification scheme, so as to form a new scheme. In controlled conditions, two experiments were conducted. The first experiment using the same total features to derive direct mangrove classification results in China for the year 2018 on the Google Earth Engine with the standard scheme and the new scheme respectively. The second experiment used the optimal features to balance the probability of a selected feature to be effective for the scheme. A comparison shows that the inclusion of the new categories reduced the false positive pixels with a rate of 71.3% in the first experiment, and a rate of 66.3% in the second experiment. Local characteristics of false positive pixels within 1 × 1 km cells, and direct classification results in two selected subset areas were also analyzed for quantitative and qualitative validation. All the validation results from the two experiments support the finding that the hypothesis is true. The validated hypothesis can be easily applied to other studies to alleviate the prevalence of false positive misclassifications.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joonhyung Jung ◽  
Changkyun Kim ◽  
Joo-Hwan Kim

Abstract Background Commelinaceae (Commelinales) comprise 41 genera and are widely distributed in both the Old and New Worlds, except in Europe. The relationships among genera in this family have been suggested in several morphological and molecular studies. However, it is difficult to explain their relationships due to high morphological variations and low support values. Currently, many researchers have been using complete chloroplast genome data for inferring the evolution of land plants. In this study, we completed 15 new plastid genome sequences of subfamily Commelinoideae using the Mi-seq platform. We utilized genome data to reveal the structural variations and reconstruct the problematic positions of genera for the first time. Results All examined species of Commelinoideae have three pseudogenes (accD, rpoA, and ycf15), and the former two might be a synapomorphy within Commelinales. Only four species in tribe Commelineae presented IR expansion, which affected duplication of the rpl22 gene. We identified inversions that range from approximately 3 to 15 kb in four taxa (Amischotolype, Belosynapsis, Murdannia, and Streptolirion). The phylogenetic analysis using 77 chloroplast protein-coding genes with maximum parsimony, maximum likelihood, and Bayesian inference suggests that Palisota is most closely related to tribe Commelineae, supported by high support values. This result differs significantly from the current classification of Commelinaceae. Also, we resolved the unclear position of Streptoliriinae and the monophyly of Dichorisandrinae. Among the ten CDS (ndhH, rpoC2, ndhA, rps3, ndhG, ndhD, ccsA, ndhF, matK, and ycf1), which have high nucleotide diversity values (Pi > 0.045) and over 500 bp length, four CDS (ndhH, rpoC2, matK, and ycf1) show that they are congruent with the topology derived from 77 chloroplast protein-coding genes. Conclusions In this study, we provide detailed information on the 15 complete plastid genomes of Commelinoideae taxa. We identified characteristic pseudogenes and nucleotide diversity, which can be used to infer the family evolutionary history. Also, further research is needed to revise the position of Palisota in the current classification of Commelinaceae.


Author(s):  
Chaoqing Wang ◽  
Junlong Cheng ◽  
Yuefei Wang ◽  
Yurong Qian

A vehicle make and model recognition (VMMR) system is a common requirement in the field of intelligent transportation systems (ITS). However, it is a challenging task because of the subtle differences between vehicle categories. In this paper, we propose a hierarchical scheme for VMMR. Specifically, the scheme consists of (1) a feature extraction framework called weighted mask hierarchical bilinear pooling (WMHBP) based on hierarchical bilinear pooling (HBP) which weakens the influence of invalid background regions by generating a weighted mask while extracting features from discriminative regions to form a more robust feature descriptor; (2) a hierarchical loss function that can learn the appearance differences between vehicle brands, and enhance vehicle recognition accuracy; (3) collection of vehicle images from the Internet and classification of images with hierarchical labels to augment data for solving the problem of insufficient data and low picture resolution and improving the model’s generalization ability and robustness. We evaluate the proposed framework for accuracy and real-time performance and the experiment results indicate a recognition accuracy of 95.1% and an FPS (frames per second) of 107 for the framework for the Stanford Cars public dataset, which demonstrates the superiority of the method and its availability for ITS.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 640
Author(s):  
Natalia R. Moyetta ◽  
Fabián O. Ramos ◽  
Jimena Leyria ◽  
Lilián E. Canavoso ◽  
Leonardo L. Fruttero

Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.


Sign in / Sign up

Export Citation Format

Share Document