scholarly journals Insights into phylogenetic relationships and genome evolution of subfamily Commelinoideae (Commelinaceae Mirb.) inferred from complete chloroplast genomes

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joonhyung Jung ◽  
Changkyun Kim ◽  
Joo-Hwan Kim

Abstract Background Commelinaceae (Commelinales) comprise 41 genera and are widely distributed in both the Old and New Worlds, except in Europe. The relationships among genera in this family have been suggested in several morphological and molecular studies. However, it is difficult to explain their relationships due to high morphological variations and low support values. Currently, many researchers have been using complete chloroplast genome data for inferring the evolution of land plants. In this study, we completed 15 new plastid genome sequences of subfamily Commelinoideae using the Mi-seq platform. We utilized genome data to reveal the structural variations and reconstruct the problematic positions of genera for the first time. Results All examined species of Commelinoideae have three pseudogenes (accD, rpoA, and ycf15), and the former two might be a synapomorphy within Commelinales. Only four species in tribe Commelineae presented IR expansion, which affected duplication of the rpl22 gene. We identified inversions that range from approximately 3 to 15 kb in four taxa (Amischotolype, Belosynapsis, Murdannia, and Streptolirion). The phylogenetic analysis using 77 chloroplast protein-coding genes with maximum parsimony, maximum likelihood, and Bayesian inference suggests that Palisota is most closely related to tribe Commelineae, supported by high support values. This result differs significantly from the current classification of Commelinaceae. Also, we resolved the unclear position of Streptoliriinae and the monophyly of Dichorisandrinae. Among the ten CDS (ndhH, rpoC2, ndhA, rps3, ndhG, ndhD, ccsA, ndhF, matK, and ycf1), which have high nucleotide diversity values (Pi > 0.045) and over 500 bp length, four CDS (ndhH, rpoC2, matK, and ycf1) show that they are congruent with the topology derived from 77 chloroplast protein-coding genes. Conclusions In this study, we provide detailed information on the 15 complete plastid genomes of Commelinoideae taxa. We identified characteristic pseudogenes and nucleotide diversity, which can be used to infer the family evolutionary history. Also, further research is needed to revise the position of Palisota in the current classification of Commelinaceae.

2020 ◽  
Author(s):  
Joonhyung Jung ◽  
Changkyun Kim ◽  
Joo-Hwan Kim

Abstract BackgroundCommelinaceae (Commelinales) comprise 41 genera and widely distributed in both the Old and New Worlds except Europe. The relationships among genera in this family have been suggested in several morphological and molecular studies. However, it is difficult to explain their relationships due to high morphological variations and low support values. Nowadays, many researchers are commonly using complete chloroplast genome data for inferring evolution of land plants. In this study, we completed 15 new chloroplast genome sequences of subfamily Commelinoideae using Mi-seq platform. We utilized genome data for the first time to reveal the structural variations and reconstruct the problematic positions of genera.Results All examined species of Commelinoideae have three pseudogenes (accD, rpoA, and ycf15) and former two genes might be a synapomorphy within the Commelinales. Only four species in tribe Commelineae appear IR expansion which affected duplication of rpl22 gene. We identified inversions which range from approximately 3 to 15 kb from four taxa (Murdannia, Streptolirion, Amischotolype, and Belosynapsis). The phylogenetic analyse using 77 chloroplast protein coding genes with maximum parsimony, maximum likelihood, and the Bayesian inference suggest that Palisota connected with tribe Commelineae with high support values, differ from recent classification of Commelinaceae. Also, we resolved unclear position of Streptoliriinae and monophyly of Dichorisandrinae.Conclusions In this study, we provide detailed information of the 15 plastid genomes of Commelinaceae taxa. We identified characteristic pseudogenes and nucleotide diversity, which can be used for inferring evolutionary history about this family. Also, we need a further research to revise position of Palisota in recent classification.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1497
Author(s):  
Cai-Yun Zhang ◽  
Tong-Jian Liu ◽  
Xiao-Lu Mo ◽  
Hui-Run Huang ◽  
Gang Yao ◽  
...  

Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary to characterize more chloroplast (cp) genomes for infrageneric phylogeny analyses and species identification of Pogostemon, especially for patchouli plants. In this study, we newly generated four cp genomes for three patchouli plants (i.e., Pogostemon plectranthoides Desf., P. septentrionalis C. Y. Wu et Y. C. Huang, and two cultivars of P. cablin (Blanoco) Benth.). Comparison of all samples (including online available cp genomes of P. yatabeanus (Makino) Press and P. stellatus (Lour.) Kuntze) suggested that Pogostemon cp genomes are highly conserved in terms of genome size and gene content, with a typical quadripartite circle structure. Interspecific divergence of cp genomes has been maintained at a relatively low level, though seven divergence hotspot regions were identified by stepwise window analysis. The nucleotide diversity (Pi) value was correlated significantly with gap proportion (indels), but significantly negative with GC content. Our phylogenetic analyses based on 80 protein-coding genes yielded high-resolution backbone topologies for the Lamiaceae and Pogostemon. For the overall mean substitution rates, the synonymous (dS) and nonsynonymous (dN) substitution rate values of protein-coding genes varied approximately threefold, while the dN values among different functional gene groups showed a wider variation range. Overall, the cp genomes of Pogostemon will be useful for phylogenetic reconstruction, species delimitation and identification in the future.


Author(s):  
Luoyun Wang ◽  
Jing Wang ◽  
Caiyun He ◽  
Jianguo Zhang ◽  
Yanfei Zeng

Hippophae is a tree species with ecological, economic and social benefits. In this study, we assembled and annotated chloroplast genomes of sympatric Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Their full-length are 155260 and 156415 bp, respectively. Each of them has 131 genes, comprising 85 protein-coding genes, 8 ribosomal RNA genes and 38 transfer RNA genes. After comparing the chloroplast genomes, we found 1302 base difference loci, and 63.29% are located in the intergenic region or intron sequences and 36.71% are located in the coding sequences. The SSC region has the highest mutation rate, followed by the LSC region; the IR regions have the lowest mutation rate. Among the protein-coding genes, three had a ratio of nonsynonymous to synonymous substitutions (Ka/Ks) >1 (but P values were non-significant) and 66 had Ka/Ks <1 (46 were significant). In general, the chloroplast protein-coding genes may be subject to purification selection. Among H. gyantsensis and H. rhamnoides subsp. yunnanensis chloroplast protein-coding genes, there are 20 and 16 optimal codons, respectively. Most of the optimal codons were ending with A or U, which indicates significant AT preference. It is an important reference for studies on the general characteristics and evolution of the Hippophae chloroplast genome.


2018 ◽  
Vol 19 (12) ◽  
pp. 3780 ◽  
Author(s):  
Dingxuan He ◽  
Andrew Gichira ◽  
Zhizhong Li ◽  
John Nzei ◽  
Youhao Guo ◽  
...  

The order Nymphaeales, consisting of three families with a record of eight genera, has gained significant interest from botanists, probably due to its position as a basal angiosperm. The phylogenetic relationships within the order have been well studied; however, a few controversial nodes still remain in the Nymphaeaceae. The position of the Nuphar genus and the monophyly of the Nymphaeaceae family remain uncertain. This study adds to the increasing number of the completely sequenced plastid genomes of the Nymphaeales and applies a large chloroplast gene data set in reconstructing the intergeneric relationships within the Nymphaeaceae. Five complete chloroplast genomes were newly generated, including a first for the monotypic Euryale genus. Using a set of 66 protein-coding genes from the chloroplast genomes of 17 taxa, the phylogenetic position of Nuphar was determined and a monophyletic Nymphaeaceae family was obtained with convincing statistical support from both partitioned and unpartitioned data schemes. Although genomic comparative analyses revealed a high degree of synteny among the chloroplast genomes of the ancient angiosperms, key minor variations were evident, particularly in the contraction/expansion of the inverted-repeat regions and in RNA-editing events. Genome structure, and gene content and arrangement were highly conserved among the chloroplast genomes. The intergeneric relationships defined in this study are congruent with those inferred using morphological data.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Yuxin Hu ◽  
Weiyue Xing ◽  
Zhengyu Hu ◽  
Guoxiang Liu

We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. We found phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae. Our results showed that all volvocine species showed significantly higher substitution rates for the mitochondrial genome compared with the chloroplast genome. The nonsynonymous substitution (dN)/synonymous substitution (dS) ratio is similar in the genomes of both organelles in most volvocine species, suggesting that the two counterparts are under a similar selection pressure. We also identified a few chloroplast protein-coding genes that showed high dN/dS ratios in some species, resulting in a significant dN/dS ratio difference between the mitochondrial and chloroplast genomes.


Sign in / Sign up

Export Citation Format

Share Document