Sorting vectors

1970 ◽  
Vol 68 (1) ◽  
pp. 153-157 ◽  
Author(s):  
Rollo Davidson

1. Introduction: In what follows, X will be a real inner-product linear space (inner product (x, y), norm |x| = (x, x)½); En will be n-dimensional real Euclidean space. We shall be dealing with sets {as: 1 ≤ s ≤ rk; r ≥ 1, k ≥ 2} of elements of X; we write a for the vector (a1; …, ark), and put . We suppose that |as| ≤ ∈ (< 0) for every s.

1971 ◽  
Vol 23 (2) ◽  
pp. 315-324 ◽  
Author(s):  
A. McD. Mercer

1. If f is a real-valued function possessing a Taylor series convergent in (a — R, a + R), then it satisfies the following operational identity1.1in which D2 = d2/du2. Furthermore, when g is a solution of y″ + λ2y = 0 in (a – R, a + R), then g is such a function and (1.1) specializes to1.2In this note we generalize these results to the real Euclidean space EN, our conclusions being Theorems 1 and 2 below. Clearly, (1.2) is a special case of (1.1) but in higher-dimensional space it is of interest to allow g, now a solution of1.3to possess singularities at isolated points away from the origin. It is then necessary to consider not only a neighbourhood of the origin but annular regions also.


1980 ◽  
Vol 21 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Earl Berkson ◽  
Horacio Porta

Let C be the complex plane, and U the disc |Z| < 1 in C. Cn denotes complex n-dimensional Euclidean space, <, > the inner product, and | · | the Euclidean norm in Cn;. Bn will be the open unit ball {z ∈ Cn:|z| < 1}, and Un will be the unit polydisc in Cn. For l ≤ p < ∞, p ≠ 2, Gp(Bn) (resp., Gp(Un)) will denote the group of all isometries of Hp(Bn) (resp., Hp(Un)) onto itself, where Hp(Bn) and HP(Un) are the usual Hardy spaces.


1958 ◽  
Vol 9 (4) ◽  
pp. 168-169
Author(s):  
Hazel Perfect

This note presents a proof of the following proposition:Theorem. If Pythagorean orthogonality is homogeneous in a normed linear space T then T is an abstract Euclidean space.The theorem was originally stated and proved by R. C. James ([1], Theorem 5. 2) who systematically discusses various characterisations of a Euclidean space in terms of concepts of orthogonality. I came across the result independently and the proof which I constructed is a simplified version of that of James. The hypothesis of the theorem may be stated in the form:Since a normed linear space is known to be Euclidean if the parallelogram law:is valid throughout the space (see [2]), it is evidently sufficient to show that (l) implies (2).


1986 ◽  
Vol 33 (3) ◽  
pp. 449-455 ◽  
Author(s):  
J. R. Partington

Some properties which different definitions or orthogonality in a normed space can possess are considered. It is shown that orthogonality can be defined on any separable space with many of the properties possessed by the usual orthogonality in an inner-product space, but that the possession of a further property forces the space to be isomorphic to a Euclidean space.


Author(s):  
W. N. Everitt ◽  
M. Giertz

SynopsisThe symmetric differential expression M determined by Mf = − Δf;+qf on G, where Δ is the Laplacian operator and G a region of n-dimensional real euclidean space Rn, is said to be separated if qfϵL2(G) for all f ϵ Dt,; here D1 ⊂ L2(G) is the maximal domain of definition of M determined in the sense of generalized derivatives. Conditions are given on the coefficient q to obtain separation and certain associated integral inequalities.


2018 ◽  
Vol 10 (1) ◽  
pp. 143-164 ◽  
Author(s):  
H. Levent ◽  
Y. Yilmaz

In this paper, we investigate a very important function space consists of set-valued functions defined on the set of real numbers with values on the space of all compact-convex subsets of complex numbers for which the $p$th power of their norm is integrable. In general, this space is denoted by $L^{p}% (\mathbb{R},\Omega(\mathbb{C}))$ for $1\leq p<\infty$ and it has an algebraic structure named as a quasilinear space which is a generalization of a classical linear space. Further, we introduce an inner-product (set-valued inner product) on $L^{2}(\mathbb{R},\Omega(\mathbb{C}))$ and we think it is especially important to manage interval-valued data and interval-based signal processing. This also can be used in imprecise expectations. The definition of inner-product on $L^{2}(\mathbb{R},\Omega(\mathbb{C}))$ is based on Aumann integral which is ready for use integration of set-valued functions and we show that the space $L^{2}(\mathbb{R},\Omega(\mathbb{C}))$ is a Hilbert quasilinear space. Finally, we give translation, modulation and dilation operators which are three fundational set-valued operators on Hilbert quasilinear space $L^{2}(\mathbb{R},\Omega(\mathbb{C}))$.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Bhuwan Prasad Ojha ◽  
Prakash Muni Bajracharya ◽  
Vishnu Narayan Mishra

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.


2013 ◽  
Vol 05 (03) ◽  
pp. 345-360
Author(s):  
INDRANIL BISWAS

Let V be a finite dimensional complex vector space equipped with an inner product. Let G denote the group of all affine automorphisms of V preserving the metric defined by the inner product. Let H be a connected reductive affine algebraic group defined over ℂ. We give an explicit classification of the isomorphism classes of G-equivariant holomorphic hermitian principal H-bundles over V.


1963 ◽  
Vol 59 (2) ◽  
pp. 411-416
Author(s):  
G. De Barra ◽  
N. B. Slater

Let Xν, ν= l, 2, …, n be n independent random variables in k-dimensional (real) Euclidean space Rk, which have, for each ν, finite fourth moments β4ii = l,…, k. In the case when the Xν are identically distributed, have zero means, and unit covariance matrices, Esseen(1) has discussed the rate of convergence of the distribution of the sumsIf denotes the projection of on the ith coordinate axis, Esseen proves that ifand ψ(a) denotes the corresponding normal (radial) distribution function of the same first and second moments as μn(a), thenwhere and C is a constant depending only on k. (C, without a subscript, will denote everywhere a constant depending only on k.)


Sign in / Sign up

Export Citation Format

Share Document