A Theory of Hartree's Atomic Fields

Author(s):  
J. A. Gaunt

In a recent communication to this Society Dr Hartree has put forward a method for calculating the field of anatom containing many electrons. Each orbit—to borrow a metaphor from the old quantum theory—is related to a wave-function Ψ which obeys Schrödinger's equation. The potential energy used in this equation is due partly to the field of the nucleus, and partly to the fields of the electrons in the other orbits. The latter are calculated upon Schrödinger's interpretation of the wave-function, that |Ψ|2 is the density of charge, measured in electronic charges per unit volume. It is not the purpose of this paper to discuss the practical methods of obtaining wave-functions which reproduce the fields from which they are derived; but to relate these wave-functions and their energy parameters to those of the accepted theory.

2016 ◽  
Vol 71 (3) ◽  
pp. 195-212
Author(s):  
H. Dieter Zeh

AbstractThis is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are “occupied once” (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the “configuration” space of fundamental fields, or on another, as yet elusive, fundamental local basis.


1936 ◽  
Vol 32 (2) ◽  
pp. 260-264 ◽  
Author(s):  
C. E. Easthope

1. The problem of calculating the polarizability of molecular hydrogen has recently been considered by a number of investigators. Steensholt and Hirschfelder use the variational method developed by Hylleras and Hassé. For ψ0, the wave function of the unperturbed molecule when no external field is present, they take either the Rosent or the Wang wave function, while the wave functions of the perturbed molecule were considered in both the one-parameter form, ψ0 [1+A(q1 + q2)] and the two-parameter form, ψ0 [1+A(q1 + q2) + B(r1q1 + r2q2)], where A and B are parameters to be varied so as to give the system a minimum energy, q1 and q2 are the coordinates of the electrons 1 and 2 in the direction of the applied field as measured from the centre of the molecule, and r1 and r2 are their respective distances from the same point. Mrowka, on the other hand, employs a method based on the usual perturbation theory. Their numerical results are given in the following table.


2021 ◽  
Author(s):  
Aman Yadav

The relationship between Einstein's Field Equation and Schrodinger's Equation is examined in thiswork. I adjusted Schrodinger's Equation to offer the solution, and utilizing the wave equation, Icame up with two cases: In case 1, I discovered the structure and dimension of the equations in amanner similar to Einstein's Field Equation, and in case 2, the Helmholtz equation replaces themodified Schrodinger's equation. Finally, the findings suggested that wave functions may haverelevance beyond determining the position of a particle, and that they may be used to determinethe structure of space-time at the quantum level.


1995 ◽  
Vol 05 (01) ◽  
pp. 3-16 ◽  
Author(s):  
ILYA PRIGOGINE

Nonintegrable Poincaré systems with continuous spectrum (so-called Large Poincaré Systems, LPS) lead to the appearance of diffusive terms in the framework of dynamics. These terms break time symmetry. They lead, therefore, to limitations to classical trajectory dynamics and of wave functions. These diffusive terms correspond to well-defined classes of dynamical processes (i.e., so-called “vacuum-vacuum” transitions). The diffusive effects are amplified in situations corresponding to persistent interactions. As a result, we have to include already in the fundamental dynamical description the two aspects, probability and irreversibility, which are so conspicuous on the macroscopic level. We have to formulate both classical and quantum mechanics on the Liouville level of probability distributions (or density matrices). For integrable systems, we recover the usual formulations of classical or quantum mechanics. Instead of being irreducible concepts, which cannot be further analyzed, trajectories and wave functions appear as special solutions of the Liouville-von Neumann equations. This extension of classical and quantum dynamics permits us to unify the two concepts of nature we inherited from the 19th century, based on the one hand on dynamical time-reversible laws and on the other on an evolutionary view associated to entropy. It leads also to a unified formulation of quantum theory avoiding the conventional dual structure based on Schrödinger’s equation on the one hand, and on the “collapse” of the wave function on the other. A dynamical interpretation is given to processes such as decoherence or approach to equilibrium without any appeal to extra dynamic considerations (such as the many-world theory, coarse graining or averaging over the environment). There is a striking parallelism between classical and quantum theory. For LPS we have, in general, both a “collapse” of trajectories and of wave functions for LPS. In both cases, we need a generalized formulation of dynamics in terms of probability distributions or density matrices. Since the beginning of this century, we know that classical mechanics had to be generalized to take into account the existence of universal constants. We now see that classical as well as quantum mechanics also have to be extended to include unstable dynamical systems such as LPS. As a result, we achieve a new formulation of "laws of physics" dealing no more with certitudes but with probabilities. The formulation is appropriate to describe an open, evolving universe.


2019 ◽  
Vol 97 (4) ◽  
pp. 431-435
Author(s):  
Dan N. Vollick

In the pilot-wave theory of quantum mechanics particles have definite positions and velocities and the system evolves deterministically. The velocity of a particle is determined by the wave function of the system (the guidance equation) and the wave function evolves according to Schrödinger’s equation. In this paper I first construct a Hamiltonian that gives Schrödinger’s equation and the guidance equation for the particle. I then find the Hamiltonian for a relativistic particle in Dirac’s theory and for a quantum scalar field.


2010 ◽  
Vol 24 (17) ◽  
pp. 3439-3452
Author(s):  
SONJA KRSTIĆ ◽  
VJEKOSLAV SAJFERT ◽  
BRATISLAV TOŠIĆ

Using the linearized Hamiltonian of individual phonon, it was shown that Schrödinger's equation of individual phonon is by form identical with classical hyperbolic equation. It was also shown that damper in shepherd's flute is reflexive for high frequencies and transparent for low ones. This result was experimentally tested by authors and good agreement of theory and experiment was found. The propagation of sound in parallelopipedal and cylindrical shepherd's flute was investigated. It turned out that parallelopipedal sound propagates in z-direction, only, while in cylindrical one besides plane waves in z-direction the damped waves in x, y plane appear.


1997 ◽  
Vol 11 (03) ◽  
pp. 295-302
Author(s):  
Fahrettin Gögtas ◽  
A. Kadir Yildiz ◽  
Gabriel G. Balint-Kurti

We have proposed a new method to calculate low lying eigenstates of Hamiltonian operator for triatomic molecules. The method is a grid method based on continuously pumping flux onto the potential energy surface and gives the wave function overlapping with prechosen energy of interest. This energy may correspond to a bound state, a resonance or a continuum state. We have calculated several low lying bound state energies and corresponding bound state wave functions for HOCl with HO bond fixed at its equilibrium value.


Sign in / Sign up

Export Citation Format

Share Document