Multiplicative norms on Banach algebras

1951 ◽  
Vol 47 (3) ◽  
pp. 473-474 ◽  
Author(s):  
R. E. Edwards

1. Mazur(1) has shown that any normed algebra A over the real field in which the norm is multiplicative in the sense thatis equivalent (i.e. algebraically isomorphic and isometric under one and the same mapping) to one of the following algebras: (i) the real numbers, (ii) the complex numbers, (iii) the real quaternions, each of these sets being regarded as normed algebras over the real field. Completeness of A is not assumed by Mazur. A relevant discussion is given also in Lorch (2).

1969 ◽  
Vol 21 ◽  
pp. 1309-1318 ◽  
Author(s):  
James Stewart

Let G be an abelian group, written additively. A complexvalued function ƒ, defined on G, is said to be positive definite if the inequality1holds for every choice of complex numbers C1, …, cn and S1, …, sn in G. It follows directly from (1) that every positive definite function is bounded. Weil (9, p. 122) and Raïkov (5) proved that every continuous positive definite function on a locally compact abelian group is the Fourier-Stieltjes transform of a bounded positive measure, thus generalizing theorems of Herglotz (4) (G = Z, the integers) and Bochner (1) (G = R, the real numbers).If ƒ is a continuous function, then condition (1) is equivalent to the condition that2


1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


Author(s):  
Алексеенко ◽  
A. Alekseenko ◽  
Лихачева ◽  
M. Likhacheva

The article is devoted to the study of the peculiarities of real numbers in the discipline "Algebra and analysis" in the secondary school. The theme of "Real numbers" is not easy to understand and often causes difficulties for students. However, the study of this topic is now being given enough attention and time. The consequence is a lack of understanding of students and school-leavers, what constitutes the real numbers, irrational numbers. At the same time the notion of a real number is required for further successful study of mathematics. To improve the efficiency of studying the topic and form a clear idea about the different numbers offered to add significantly to the material of modern textbooks, increase the number of hours in the study of real numbers, as well as to include in the school course of algebra topics "Complex numbers" and "Algebraic structures".


1984 ◽  
Vol 49 (2) ◽  
pp. 343-375 ◽  
Author(s):  
Chris Freiling

Abstract.Banach introduced the following two-person, perfect information, infinite game on the real numbers and asked the question: For which sets A ⊆ R is the game determined?Rules: The two players alternate moves starting with player I. Each move an is legal iff it is a real number and 0 < an, and for n > 1, an < an−1. The first player to make an illegal move loses. Otherwise all moves are legal and I wins iff exists and .We will look at this game and some variations of it, called Banach games. In each case we attempt to find the relationship between Banach determinacy and the determinacy of other well-known and much-studied games.


1964 ◽  
Vol 7 (1) ◽  
pp. 101-119 ◽  
Author(s):  
A. Sharma

Let1be n+2 distinct points on the real line and let us denote the corresponding real numbers, which are at the moment arbitrary, by2The problem of Hermite-Fejér interpolation is to construct the polynomials which take the values (2) at the abscissas (1) and have preassigned derivatives at these points. This idea has recently been exploited in a very interesting manner by P. Szasz [1] who has termed qua si-Hermite-Fejér interpolation to be that process wherein the derivatives are only prescribed at the points x1, x2, …, xn and the points -1, +1 are left out, while the values are prescribed at all the abscissas (1).


1982 ◽  
Vol 92 (1) ◽  
pp. 139-161 ◽  
Author(s):  
Hideaki Ōshima

The purpose of this note is to determine some unstable James numbers of Stiefel manifolds. We denote the real numbers by R, the complex numbers by C, and the quaternions by H. Let F be one of these fields with the usual norm, and d = dimRF. Let On, k = On, k(F) be the Stiefel manifold of all orthonormal k–frames in Fn, and q: On, k → Sdn−1 the bundle projection which associates with each frame its last vector. Then the James number O{n, k} = OF{n, k} is defined as the index of q* πdn−1(On, k) in πdn−1(Sdn−1). We already know when O{n, k} is 1 (cf. (1), (2), (3), (13), (33)), and also the value of OK{n, k} (cf. (1), (13), (15), (34)). In this note we shall consider the complex and quaternionic cases. For earlier work see (11), (17), (23), (27), (29), (31) and (32). In (27) we defined the stable James number , which was a divisor of O{n, k}. Following James we shall use the notations X{n, k}, Xs{n, k}, W{n, k} and Ws{n, k} instead of OH{n, k}, , Oc{n, k} and respectively. In (27) we noticed that O{n, k} = Os{n, k} if n ≥ 2k– 1, and determined Xs{n, k} for 1 ≤ k ≤ 4, and also Ws{n, k} for 1 ≤ k ≤ 8. On the other hand Sigrist (31) calculated W{n, k} for 1 ≤ k ≤ 4. He informed the author that W{6,4} was not 4 but 8. Since Ws{6,4} = 4 (cf. § 5 below) this yields that the unstable James number does not equal the stable one in general.


2017 ◽  
Vol 82 (1) ◽  
pp. 137-150 ◽  
Author(s):  
GREGORY IGUSA ◽  
JULIA F. KNIGHT ◽  
NOAH DAVID SCHWEBER

AbstractIn [8], the third author defined a reducibility $\le _w^{\rm{*}}$ that lets us compare the computing power of structures of any cardinality. In [6], the first two authors showed that the ordered field of reals ${\cal R}$ lies strictly above certain related structures. In the present paper, we show that $\left( {{\cal R},exp} \right) \equiv _w^{\rm{*}}{\cal R}$. More generally, for the weak-looking structure ${\cal R}$ℚ consisting of the real numbers with just the ordering and constants naming the rationals, all o-minimal expansions of ${\cal R}$ℚ are equivalent to ${\cal R}$. Using this, we show that for any analytic function f, $\left( {{\cal R},f} \right) \equiv _w^{\rm{*}}{\cal R}$. (This is so even if $\left( {{\cal R},f} \right)$ is not o-minimal.)


2016 ◽  
Vol 37 (8) ◽  
pp. 2487-2555 ◽  
Author(s):  
DANNY CALEGARI ◽  
SARAH KOCH ◽  
ALDEN WALKER

In 1985, Barnsley and Harrington defined a ‘Mandelbrot Set’${\mathcal{M}}$for pairs of similarities: this is the set of complex numbers$z$with$0<|z|<1$for which the limit set of the semigroup generated by the similarities$$\begin{eqnarray}x\mapsto zx\quad \text{and}\quad x\mapsto z(x-1)+1\end{eqnarray}$$is connected. Equivalently,${\mathcal{M}}$is the closure of the set of roots of polynomials with coefficients in$\{-1,0,1\}$. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small ‘holes’ in${\mathcal{M}}$, and conjectured that these holes were genuine. These holes are very interesting, since they are ‘exotic’ components of the space of (2-generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, and he conjectured that the interior points are dense away from the real axis. We introduce the technique oftrapsto construct and certify interior points of${\mathcal{M}}$, and use them to prove Bandt’s conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in${\mathcal{M}}$.


1987 ◽  
Vol 102 (3) ◽  
pp. 481-505 ◽  
Author(s):  
E. O. Oshobi ◽  
J. S. Pym

A few years ago, the authors considered briefly Banach algebras whose duals could be identified ‘naturally’ with their multiplier algebras [17]. In this context, naturalness can be interpreted as meaning that, for each element b of the algebra B and each pair of elements u, v of the dual B′,where 〈, 〉 denotes the dual pairing and the products are of elements of B′ regarded as left or right multipliers on B. In the present paper we return to the same circle of ideas but begin with a more general situation. We assume only that the algebra B is injectively embedded in its algebra of left, and in its algebra of right, multipliers and that its dual B′ can be injectively embedded in the algebra M(B) of double multipliers on B (definition below) in such a way that the above relation holds. From these assumptions we shall prove that there is a normed algebra A such that M(B) is the dual of A and is the algebra of continuous left multipliers on A (or, equally, right multipliers).


Sign in / Sign up

Export Citation Format

Share Document