The coefficients of certain integral modular forms

1954 ◽  
Vol 50 (2) ◽  
pp. 305-308 ◽  
Author(s):  
R. A. Rankin ◽  
J. M. Rushforth

The notation which we use is that of a recent paper by one of us, and we quote results from that paper as they are required. It is known (see R, Theorem 1, for example) that the vector space k of all cusp-forms f(z) of even negative dimension – k (k ≥ 12), belonging to the full modular group Γ(1), possesses a finite basis of formswhere k is defined by (2·10) of R and the coefficients possess the following properties:for a prime p, where p is a positive integer.

1978 ◽  
Vol 19 (2) ◽  
pp. 173-197 ◽  
Author(s):  
Karl-Bernhard Gundlach

It is well known that the number Ak(m) of representations of a positive integer m as the sum of k squares of integers can be expressed in the formwhere Pk(m) is a divisor function, and Rk(m) is a remainder term of smaller order. (1) is a consequence of the fact thatis a modular form for a certain congruence subgroup of the modular group, andwithwhere Ek(z) is an Eisenstein series and is a cusp form (as was first pointed out by Mordell [9]). The result (1) remains true if m is taken to be a totally positive integer from a totally real number field K and Ak(m) is the number of representations of m as the sum of k squares of integers from K (at least for 2|k, k>2, and for those cases with 2+k which have been investigated). then are replaced by modular forms for a subgroup of the Hilbert modular group with Fourier expansions of the form (10) (see section 2).


1961 ◽  
Vol 4 (3) ◽  
pp. 239-242
Author(s):  
B.N. Moyls ◽  
N.A. Khan

In 1949 Ky Fan [1] proved the following result: Let λ1…λn be the eigenvalues of an Hermitian operator H on an n-dimensional vector space Vn. If x1, …, xq is an orthonormal set in V1, and q is a positive integer such n that 1 ≤ q ≤ n, then1


1990 ◽  
Vol 32 (3) ◽  
pp. 317-327 ◽  
Author(s):  
M. Akbas ◽  
D. Singerman

Let Γ denote the modular group, consisting of the Möbius transformationsAs usual we denote the above transformation by the matrix remembering that V and – V represent the same transformation. If N is a positive integer we let Γ0(N) denote the transformations for which c ≡ 0 mod N. Then Γ0(N) is a subgroup of indexthe product being taken over all prime divisors of N.


1985 ◽  
Vol 27 ◽  
pp. 39-56 ◽  
Author(s):  
A. Good

The study of modular forms has been deeply influenced by famous conjectures and hypotheses concerningwhere T(n) denotes Ramanujan's function. The fundamental discriminant Δ is a cusp form of weight 12 with respect to the modular group. Its associated Dirichlet seriesdefines an entire function of s and satisfies the functional equationThe most penetrating statements that have been made on T(n) and LΔ(s)are:Of these four problems only A1 has been established so far. This was done by Deligne [1] using methods from algebraic geometry and number theory. While B1 trivially holds with ε > 1/2, it was established in [2] for every ε>1/3. Serre [12] proved A2 for a positive proportion of the integers and Hafner [5] showed that LΔ has a positive proportion of its non-trivial zeros on the line σ=6. The proofs of the last three results are largely analytic in nature.


1985 ◽  
Vol 27 ◽  
pp. 57-80 ◽  
Author(s):  
Karl-Bernhard Gundlach

The classical generalizations (already investigated in the second half of last century) of the modular group SL(2, ℤ) are the groups ГK = SL(2, o)(o the principal order of a totally real number field K, [K:ℚ]=n), operating, originally, on a product of n upper half-planes or, for n=2, on the product 1×− of an upper and a lower half-plane by(where v(i), for v∈K, denotes the jth conjugate of v), and Гn = Sp(n, ℤ), operating on n={Z∣Z=X+iY∈ℂ(n,n),tZ=Z, Y>0} byNowadays ГK is called Hilbert's modular group of K and Гn Siegel's modular group of degree (or genus) n. For n=1 we have Гℚ=Г1= SL(2, ℤ). The functions corresponding to modular forms and modular functions for SL(2, ℤ) and its subgroups are holomorphic (or meromorphic) functions with an invariance property of the formJ(L, t) for fixed L (or J(M, Z) for fixed M) denoting a holomorphic function without zeros on ) (or on n). A function J;, defined on ℤK×or ℤn×n to be able to appear in (1.3) with f≢0, has to satisfy certain functional equations (see below, (2.3)–(2.5) for ГK, (5.7)–(5.9) for Гn) and is called an automorphic factor (AF) then. In close analogy to the case n=1, mainly AFs of the following kind have been used:with a complex number r, the weight of J, and complex numbers v(L), v(M). AFs of this kind are called classical automorphic factors (CAP) in the sequel. If r∉ℤ, the values of the function v on ГK (or Гn) depend on the branch of (…)r. For a fixed choice of the branch (for each L∈ГK or M∈Гn) the functional equations for J, by (1.4), (1.5), correspond to functional equations for v. A function v satisfying those equations is called a multiplier system (MS) of weight r for ГK (or Гn).


1977 ◽  
Vol 16 (3) ◽  
pp. 371-378 ◽  
Author(s):  
A.R. Aggarwal ◽  
M.K. Agrawal

Let p be a rational prime and Qp be the field of p–adic numbers. Jean-Pierre Serre [Lecture Notes in Mathematics, 350, 191–268 (1973)] had defined p–adic modular forms as the limits of sequences of modular forms over the modular group SL2(Z). He proved that with each non-zero p–adic modular form there is associated a unique element called its weight k. The p–adic modular forms having the same weight form a Qp–vector space.The object of this paper is to obtain a basis of p–adic modular forms and thus to know precisely all p–adic modular forms of a given weight k. The dimension of such modular forms as a Qp–vector space is countably infinite.


1980 ◽  
Vol 23 (2) ◽  
pp. 151-161 ◽  
Author(s):  
R. A. Rankin

Every holomorphic modular form of weight k > 2 is a sum of Poincaré series; see, for example, Chapter 5 of (5). In particular, every cusp form of even weight k ≧ 4 for the full modular group Γ(1) is a linear combination over the complex field C of the Poincaré series.Here mis any positive integer, z ∈ H ={z ∈ C: Im z>0} andThe summation is over all matriceswith different second rows in the (homogeneous) modular group, i.e. in SL(2, Z).The factor ½ is introducted for convenience.


2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


Sign in / Sign up

Export Citation Format

Share Document