Homomorphs and wreath product extensions

Author(s):  
Peter Förster

A homomorph is a class of (finite soluble) groups closed under the operation Q of taking epimorphic images. (All groups considered in this paper are finite and soluble.) Among those types of homomorphs that have found particular interest in the theory of finite soluble groups are formations and Schunck classes; the reader is referred to (2), § 2, for a definition of those classes. In the present paper we are interested in homomorphs satisfying the following additional closure property:(W0) if A is abelian with elementary Sylow subgroups, then each wreath product A G (with respect to an arbitrary permutation representation of G) with G ∊ is contained in .

Author(s):  
Martsinkevich Anna V.

Let P be the set of all primes, Zn a cyclic group of order n and X wr Zn the regular wreath product of the group X with Zn. A Fitting class F is said to be X-quasinormal (or quasinormal in a class of groups X ) if F ⊆ X, p is a prime, groups G ∈ F and G wr Zp ∈ X, then there exists a natural number m such that G m wr Zp ∈ F. If  X is the class of all soluble groups, then F is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial X-quasinormal Fitting classes is a nontrivial X-quasinormal Fitting class. In particular, there exists the smallest nontrivial X-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture (in particular, the Lockett conjecture) about the structure of a Fitting class for the case of X-quasinormal classes, where X is a local Fitting class of partially soluble groups.


1995 ◽  
Vol 38 (3) ◽  
pp. 511-522 ◽  
Author(s):  
M. J. Tomkinson

We introduce a definition of a Schunck class of periodic abelian-by-finite soluble groups using major subgroups in place of the maximal subgroups used in Finite groups. This allows us to develop the theory as in the finite case proving the existence and conjugacy of projectors. Saturated formations are examples of Schunck classes and we are also able to obtain an infinite version of Gaschütz Ω-subgroups.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350116 ◽  
Author(s):  
L. S. KAZARIN ◽  
A. MARTÍNEZ-PASTOR ◽  
M. D. PÉREZ-RAMOS

The paper considers the influence of Sylow normalizers, i.e. normalizers of Sylow subgroups, on the structure of finite groups. In the universe of finite soluble groups it is known that classes of groups with nilpotent Hall subgroups for given sets of primes are exactly the subgroup-closed saturated formations satisfying the following property: a group belongs to the class if and only if its Sylow normalizers do so. The paper analyzes the extension of this research to the universe of all finite groups.


Most of the well-known theorems of Sylow for finite groups and of P. Hall for finite soluble groups have been extended to certain restricted classes of infinite groups. To show the limitations of such generalizations, examples are here constructed of infinite groups subject to stringent but natural restrictions, groups in which certain Sylow or Hall theorems fail. All the groups are metabelian and of exponent 6. There are countable such groups in which a Sylow 2-subgroup has a complement but no Sylow 3-complement; or again no complement at all. There are countable such groups with continuously many mutually non-isomorphic Sylow 3-subgroups. There are groups, necessarily of uncountable order, with Sylow 2-subgroups of different orders. The most elaborate example is of an uncountable group in which all Sylow 2-subgroups and 3-subgroups are countable, and none is complemented.


Author(s):  
Owen J. Brison

AbstractA closure operation connected with Hall subgroups is introduced for classes of finite soluble groups, and it is shown that this operation can be used to give a criterion for membership of certain special Fitting classes, including the so-called ‘central-socle’ classes.


1985 ◽  
Vol 31 (1) ◽  
pp. 5-34 ◽  
Author(s):  
P. Förster ◽  
E. Salomon

It is well known that every local formation of finite soluble groups possesses three distinguished local definitions consisting of finite soluble groups: the minimal one, the full and integrated one, and the maximal one. As far as the first and the second of these are concerned, this statement remains true in the context of arbitrary finite groups. Doerk, Šemetkov, and Schmid have posed the problem of whether every local formation of finite groups has a distinguished (that is, unique) maximal local definition. In this paper a description of local formations with a unique maximal local definition is given, from which counter-examples emerge. Furthermore, a criterion for a formation function to be a local definition of a given local formation is obtained.


1980 ◽  
Vol 21 (1) ◽  
pp. 81-84
Author(s):  
M. J. Tomkinson

Finite soluble groups in which all the Sylow subgroups are abelian were first investigated by Taunt [8] who referred to them as A-groups. Locally finite groups with the same property have been considered by Graddon [2]. By the use of Sylow theorems it is clear that every section (homomorphic image of a subgroup) of an A-group is also an A-group and hence every nilpotent section of an A-group is abelian. This is the characterization that we use here in considering groups which are not, in general, periodic.


1966 ◽  
Vol 62 (3) ◽  
pp. 339-346 ◽  
Author(s):  
T. O. Hawkes

Introduction. Hall ((3), (4)) introduced the concept of a Sylow system and its normalizer into the theory of finite soluble groups. In (4) he showed that system normalizers may be characterized as those subgroups D of G minimal subject to the existence of a chain of subgroups from D up to G in which each subgroup is maximal and non-normal in the next; he also showed that a system normalizer covers all the central chief factors and avoids all the eccentric chief factors of G (for definitions of covering and avoidance, and an account of their elementary properties), the reader is referred to Taunt ((5)). This note arises out of an investigation into the question to what extent this covering/ avoidance property characterizes system normalizers; it provides a partial answer by means of two elementary counter-examples given in section 3 which seem to indicate that the property ceases to characterize system normalizers as soon as the ‘non-commutativity’ of the group is increased beyond a certain threshold. For the sake of completeness we include proofs in Theorems 1 and 2 of generalizations of two known results communicated to me by Dr Taunt and which as far as we know have not been published elsewhere. Theorem 1 shows the covering/avoidance property to be characteristic for the class of soluble groups with self-normalizing system normalizers introduced by Carter in (1), while Theorem 2 shows the same is true for A -groups (soluble groups with Abelian Sylow subgroups investigated by Taunt in (5)).


Sign in / Sign up

Export Citation Format

Share Document