scholarly journals Local definitions of local homomorphs and formations of finite groups

1985 ◽  
Vol 31 (1) ◽  
pp. 5-34 ◽  
Author(s):  
P. Förster ◽  
E. Salomon

It is well known that every local formation of finite soluble groups possesses three distinguished local definitions consisting of finite soluble groups: the minimal one, the full and integrated one, and the maximal one. As far as the first and the second of these are concerned, this statement remains true in the context of arbitrary finite groups. Doerk, Šemetkov, and Schmid have posed the problem of whether every local formation of finite groups has a distinguished (that is, unique) maximal local definition. In this paper a description of local formations with a unique maximal local definition is given, from which counter-examples emerge. Furthermore, a criterion for a formation function to be a local definition of a given local formation is obtained.

1990 ◽  
Vol 42 (2) ◽  
pp. 267-286 ◽  
Author(s):  
Peter Förster

We study the following question: given any local formation of finite groups, do there exist maximal local subformations? An answer is given by providing a local definition of the intersection of all maximal local subformations.


1995 ◽  
Vol 38 (3) ◽  
pp. 511-522 ◽  
Author(s):  
M. J. Tomkinson

We introduce a definition of a Schunck class of periodic abelian-by-finite soluble groups using major subgroups in place of the maximal subgroups used in Finite groups. This allows us to develop the theory as in the finite case proving the existence and conjugacy of projectors. Saturated formations are examples of Schunck classes and we are also able to obtain an infinite version of Gaschütz Ω-subgroups.


2017 ◽  
Vol 60 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Michael Christ ◽  
Marc A. Rieòel

AbstractLet be a length function on a group G, and let M denote the operator of pointwise multiplication by on l2(G). Following Connes, M𝕃 can be used as a “Dirac” operator for the reduced group C*-algebra (G). It deûnes a Lipschitz seminorm on (G), which defines a metric on the state space of (G). We show that for any length function satisfying a strong form of polynomial growth on a discrete group, the topology from this metric coincides with the weak-* topology (a key property for the definition of a “compact quantum metric space”). In particular, this holds for all word-length functions on ûnitely generated nilpotent-by-finite groups.


Author(s):  
Martsinkevich Anna V.

Let P be the set of all primes, Zn a cyclic group of order n and X wr Zn the regular wreath product of the group X with Zn. A Fitting class F is said to be X-quasinormal (or quasinormal in a class of groups X ) if F ⊆ X, p is a prime, groups G ∈ F and G wr Zp ∈ X, then there exists a natural number m such that G m wr Zp ∈ F. If  X is the class of all soluble groups, then F is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial X-quasinormal Fitting classes is a nontrivial X-quasinormal Fitting class. In particular, there exists the smallest nontrivial X-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture (in particular, the Lockett conjecture) about the structure of a Fitting class for the case of X-quasinormal classes, where X is a local Fitting class of partially soluble groups.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350116 ◽  
Author(s):  
L. S. KAZARIN ◽  
A. MARTÍNEZ-PASTOR ◽  
M. D. PÉREZ-RAMOS

The paper considers the influence of Sylow normalizers, i.e. normalizers of Sylow subgroups, on the structure of finite groups. In the universe of finite soluble groups it is known that classes of groups with nilpotent Hall subgroups for given sets of primes are exactly the subgroup-closed saturated formations satisfying the following property: a group belongs to the class if and only if its Sylow normalizers do so. The paper analyzes the extension of this research to the universe of all finite groups.


Author(s):  
A. M. Duguid ◽  
D. H. McLain

Let an element of a group be called an FC element if it has only a finite number of conjugates in the group. Baer(1) and Neumann (8) have discussed groups in which every element is FC, and called them FC-groups. Both Abelian and finite groups are trivially FC-groups; Neumann has studied the properties common to FC-groups and Abelian groups, and Baer the properties common to FC-groups and finite groups. Baer has also shown that, for an arbitrary group G, the set H1 of all FC elements is a characteristic subgroup. Haimo (3) has defined the FC-chain of a group G byHi/Hi−1 is the subgroup of all FC elements in G/Hi−1.


Author(s):  
Tsuyoshi Kajiwara ◽  
Yasuo Watatani

AbstractWe present the definition of crossed products of Hilbert C*-bimodules by Hilbert bundles with commuting finite group actions and finite dimensional fibers. This is a general construction containing the bundle construction and crossed products of Hilbert C*-bimodule by finite groups. We also study the structure of endomorphism algebras of the tensor products of bimodules. We also define the multiple crossed products using three bimodules containing more than 2 bundles and show the associativity law. Moreover, we present some examples of crossed product bimodules easily computed by our method.


1967 ◽  
Vol 30 ◽  
pp. 309-309
Author(s):  
John H. Walter

The conditions (TI 1) and (TI 2) are stated for and henceforth in the paper H is understood to be when D is taken to be a T.I. subset of G. Also in the definition of T. I. subset the condition is that D ∩ DG≠ø where ø is the empty set.


Sign in / Sign up

Export Citation Format

Share Document