Generalized adjunction and applications

Author(s):  
Paltin Ionescu

The linear system |K + C| ‘adjoint’ to a curve C on a projective surface was studied by the classical Italian geometers. The adjoint system to a hyperplane section H of smooth projective surface was investigated systematically, in modern terms, by Sommese [22] and Van de Ven [26]. The map associated to the linear system |K + (r−1)H|, where H is a hyperplane section of a smooth variety of arbitrary dimension r, was used to classify submanifolds of ℙn with ‘small invariants’ (e.g. degree, sectional genus, etc.); see [10]. On the other hand, Sommese [23, 24, 25] studied adjoint systems to a smooth ample divisor H on a smooth threefold X and obtained, as applications, many interesting results about the pair (X, H). As noticed independently by several authors (see e.g. [17], [4], [11]) the appearance of Mori's deep contribution [20] (see also [21]) put the subject of adjunction in a new perspective. Accordingly, the present paper–which relies heavily on Mori's results and on the contraction theorem due to Kawamata-Shokurov (see [14])–contains a systematical study of various adjoint systems to an ample (possibly non-effective) divisor on a manifold of arbitrary dimension. More precisely, the main result (which is contained in Section 1) gives the precise description of polarized pairs (X, H), where X is a complex projective mani–fold of dimension r and H an ample divisor on it (not necessarily effective), such that Kx + iH is not semiample (respectively ample) for 1 ≤ i = r + 1, r, r − 1, r − 2 (respectively i = r + 1, r, r − 1).

Author(s):  
Vincenzo Di Gennaro

AbstractLet $$(S,{\mathcal {L}})$$ ( S , L ) be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle $${\mathcal {L}}$$ L of degree $$d > 25$$ d > 25 . In this paper we prove that $$\chi (\mathcal O_S)\ge -\frac{1}{8}d(d-6)$$ χ ( O S ) ≥ - 1 8 d ( d - 6 ) . The bound is sharp, and $$\chi ({\mathcal {O}}_S)=-\frac{1}{8}d(d-6)$$ χ ( O S ) = - 1 8 d ( d - 6 ) if and only if d is even, the linear system $$|H^0(S,{\mathcal {L}})|$$ | H 0 ( S , L ) | embeds S in a smooth rational normal scroll $$T\subset {\mathbb {P}}^5$$ T ⊂ P 5 of dimension 3, and here, as a divisor, S is linearly equivalent to $$\frac{d}{2}Q$$ d 2 Q , where Q is a quadric on T. Moreover, this is equivalent to the fact that a general hyperplane section $$H\in |H^0(S,{\mathcal {L}})|$$ H ∈ | H 0 ( S , L ) | of S is the projection of a curve C contained in the Veronese surface $$V\subseteq {\mathbb {P}}^5$$ V ⊆ P 5 , from a point $$x\in V\backslash C$$ x ∈ V \ C .


2020 ◽  
Vol 8 ◽  
Author(s):  
Burt Totaro

Abstract We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme $X^{[n]}$ has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes of surfaces.


Author(s):  
Mattias Jonsson ◽  
Paul Reschke

AbstractWe show that any birational selfmap of a complex projective surface that has dynamical degree greater than one and is defined over a number field automatically satisfies the Bedford–Diller energy condition after a suitable birational conjugacy. As a consequence, the complex dynamics of the map is well behaved. We also show that there is a well-defined canonical height function.


2016 ◽  
Vol 60 (3) ◽  
pp. 615-633 ◽  
Author(s):  
Sonja Currie ◽  
Thomas T. Roth ◽  
Bruce A. Watson

AbstractA self-adjoint first-order system with Hermitian π-periodic potential Q(z), integrable on compact sets, is considered. It is shown that all zeros of are double zeros if and only if this self-adjoint system is unitarily equivalent to one in which Q(z) is π/2-periodic. Furthermore, the zeros of are all double zeros if and only if the associated self-adjoint system is unitarily equivalent to one in which Q(z) = σ2Q(z)σ2. Here, Δ denotes the discriminant of the system and σ0, σ2 are Pauli matrices. Finally, it is shown that all instability intervals vanish if and only if Q = rσ0 + qσ2, for some real-valued π-periodic functions r and q integrable on compact sets.


Author(s):  
Pengfei Zhang ◽  
Haitao Li ◽  
Zhenping Feng

This paper is a further study of the authors’ previous work on the continuous adjoint method based on the variation in grid node coordinates and Jacobi Matrices of the flow fluxes. This method simplifies the derivation and expression of the adjoint system, and reduces the computation cost. In this paper, the differences between the presented and the traditional methods are analyzed in details by comparing the derivation processes and the adjoint systems. In order to demonstrate the reliability and accuracy of the adjoint system deduced by the authors, the presented method is applied to different optimal problems, which include two inverse designs and two shape optimizations in both 2D and 3D cascades. The inverse designs are implemented by giving the isentropic Mach number distributions along the blade wall for 2D inviscid flow and 3D laminar flow. The shape optimizations are implemented with the objective function of the entropy generation in flow passage for 2D and 3D laminar flows. In the 3D optimal case, this method is validated by supersonic turbine design case with and without mass flow rate constraint. The numerical results testify the accuracy of this adjoint method, which includes only the boundary integrals, and furthermore, the universality and portability of this adjoint system for inverse designs and shape optimizations are demonstrated.


1967 ◽  
Vol 19 ◽  
pp. 1072-1077
Author(s):  
Seymour Schuster

In this issue honouring Professor Coxeter, I am pleased to present some results of an investigation that was prompted by questions which he himself raised over a decade ago.With respect to a linear system of polarities in complex projective three-space, the polars of a fixed point Q form an axial pencil of planes. The axis of the pencil is called the axis of point Q with respect to the linear system of polarities. Since there are ∞3 axes and ∞4 lines in the space, not every line is an axis. The following discussion answers the questions of how many and which lines are axes with respect to the linear systems of polarities that have a fixed self-polar tetrahedron.


1994 ◽  
Vol 61 (1) ◽  
pp. 152-160 ◽  
Author(s):  
J. W.-Z. Zu ◽  
R. P. S. Han

The dynamic response of a spinning Timoshenko beam with general boundary conditions and subjected to a moving load is solved analytically for the first time. Solution of the problem is achieved by formulating the spinning Timoshenko beams as a non-self-adjoint system. To compute the system dynamic response using the modal analysis technique, it is necessary to determine the eigenquantities of both the original and adjoint systems. In order to fix the adjoint eigenvectors relative to the eigenvectors of the original system, the biorthonormality conditions are invoked. Responses for the four classical boundary conditions which do not involve rigidbody motions are illustrated. To ensure the validity of the method, these results are compared with those from Euler-Bernoulli and Rayieigh beam theories. Numerical simulations are performed to study the influence of the four boundary conditions on selected system parameters.


Author(s):  
Fudong Ge ◽  
YangQuan Chen ◽  
Chunhai Kou

This paper is devoted to the construction of the adjoint system for the case of time fractional order diffusion equations. We first obtain the equivalent integral equation of the abstract fractional state-space system of both Caputo and Riemann-Liouville type by utilizing the Laplace transform and the semigroup theory. Then the adjoint system of time fractional diffusion equation is introduced and used to analyze the duality relationship between observation and control in a Hilbert space. The new introduced notations can also be used in many fields of modelling and control of real dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document