The dual J* of the James space has cotype 2 and the Gordon-Lewis property

1988 ◽  
Vol 103 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Gilles Pisier

AbstractWe prove the result in the title. More generally we consider the Banach space υp, of all sequences (xn) of scalars such thatwhere the supremum runs over all increasing sequences n1 ≤ n2 ≤ …. We show that is of cotype 2 if p ≽ 2 and of cotype p′, where 1/p′ + 1/p = 1, if p ≤ 2. Similar results are obtained for the analogous function spaces.

Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1961 ◽  
Vol 13 ◽  
pp. 505-518 ◽  
Author(s):  
Gregers L. Krabbe

Let be the Boolean algebra of all finite unions of subcells of the plane. Denote by εpthe algebra of all linear bounded transformations of Lp(— ∞, ∞) into itself. Suppose for a moment that p = 2, and let Rp be an involutive abelian subalgebra of εp if Rp is also a Banach space and if Tp ∈ Rp, then:(i) The family of all homomorphic mappings of into the algebra Rp contains a member EPT such that(1)


1974 ◽  
Vol 17 (1) ◽  
pp. 145-147
Author(s):  
F.-H. Vasilescu

Let T be a linear operator on a Banach space X and consider the sequence of rangeswhere the inclusions are not necessarily proper. The linear subspaces Xn=TnX (n>0) are, in general, not closed but they have some remarkable properties [1], [2]. Let X0=X and denote by |x|0 (x∈X0) the norm of X0.


Sign in / Sign up

Export Citation Format

Share Document