Properly algebraic and spectrum-finite ideals in Jordan systems

1993 ◽  
Vol 114 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ottmar Loos

The two main results of this paper are:(i) The set of properly algebraic elements of a Jordan system (algebra, triple system or pair) over an uncountable field is an ideal.(ii) For a semiprimitive Banach Jordan system, the socle, the largest properly algebraic ideal, the largest properly spectrum-finite ideal and the largest von Neumann regular ideal all coincide.

2001 ◽  
Vol 12 (07) ◽  
pp. 791-812
Author(s):  
PERE ARA ◽  
GERT K. PEDERSEN ◽  
FRANCESC PERERA

We study the operation E → cl (E) defined on subsets E of a unital ring R, where x ∈ cl (E) if (x + Rb) ∩ E ≠ ∅ for each b in R such that Rx + Rb = R. This operation, which strongly resembles a closure, originates in algebraic K-theory. For any left ideal L we show that cl (L) equals the intersection of the maximal left ideals of R containing L. Moreover, cl (Re) = Re + rad (R) if e is an idempotent in R, and cl (I) = I for a two-sided ideal I precisely when I is semi-primitive in R (i.e. rad (R/I) = 0). We then explore a special class of von Neumann regular elements in R, called persistently regular and characterized by forming an "open" subset Rpr in R, i.e. cl (R\Rpr) = R\Rpr. In fact, R\Rpr = cl (R\Rr), so that Rpr is the "algebraic interior" of the set Rr of regular elements. We show that a regular element x with partial inverse y is persistently regular, if and only if the skew corner (1 - xy)R(1 - yx) is contained in Rr. If I reg (R) denotes the maximal regular ideal in R and [Formula: see text] the set of quasi-invertible elements, defined and studied in [4], we prove that [Formula: see text]. Specializing to C*-algebras we prove that cl (E) coincides with the norm closure of E, when E is one of the five interesting sets R-1, [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], and that Rpr coincides with the topological interior of Rr. We also show that the operation cl respects boundedness, self-adjointness and positivity.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3715-3726 ◽  
Author(s):  
A.R. Aliabady ◽  
R. Mohamadian ◽  
S. Nazari

Let R be a commutative ring with identity and X be a Tychonoff space. An ideal I of R is Von Neumann regular (briefly, regular) if for every a ? I, there exists b ? R such that a = a2b. In the present paper, we obtain the general form of a regular ideal in C(X) which is OA, for some closed subset A of ?X, for which Ac?X ? (P(X))?, where P(X) is the set of all P-points of X. We show that the ideals and subrings such as CK(X), C?(X), C?(X), SocmC(X) and M?X\X are regular if and only if they are equal to the socle of C(X). We carry further the study of the maximal regular ideal, for instance, it is shown that for a vast class of topological spaces (we call them OPD-spaces) the maximal regular ideal is OX\I(X), where I(X) is the set of isolated points of X. Also, for this class, the socle of C(X) is the maximal regular ideal if and only if I(X) contains no infinite closed set. We also show that C(X) contains an ideal which is both essential and regular if and only if (P(X))? is dense in X. Finally it is shown that, for semiprimitive rings pure ideals are of the form OA which A is a closed subset of Max(R), also a P-point of X = Max(R) is introduced and it is shown that the maximal regular ideal of an arbitrary ring R is OX\P(X), which P(X) is the set of P-points of X = Max(R).


2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2011 ◽  
Vol 39 (9) ◽  
pp. 3242-3252 ◽  
Author(s):  
Najib Mahdou ◽  
Mohammed Tamekkante ◽  
Siamak Yassemi

1988 ◽  
Vol 53 (4) ◽  
pp. 1177-1187
Author(s):  
W. A. MacCaull

Using formally intuitionistic logic coupled with infinitary logic and the completeness theorem for coherent logic, we establish the validity, in Grothendieck toposes, of a number of well-known, classically valid theorems about fields and ordered fields. Classically, these theorems have proofs by contradiction and most involve higher order notions. Here, the theorems are each given a first-order formulation, and this form of the theorem is then deduced using coherent or formally intuitionistic logic. This immediately implies their validity in arbitrary Grothendieck toposes. The main idea throughout is to use coherent theories and, whenever possible, find coherent formulations of formulas which then allow us to call upon the completeness theorem of coherent logic. In one place, the positive model-completeness of the relevant theory is used to find the necessary coherent formulas.The theorems here deal with polynomials or rational functions (in s indeterminates) over fields. A polynomial over a field can, of course, be represented by a finite string of field elements, and a rational function can be represented by a pair of strings of field elements. We chose the approach whereby results on polynomial rings are reduced to results about the base field, because the theory of polynomial rings in s indeterminates over fields, although coherent, is less desirable from a model-theoretic point of view. Ultimately we are interested in the models.This research was originally motivated by the works of Saracino and Weispfenning [SW], van den Dries [Dr], and Bunge [Bu], each of whom generalized some theorems from algebraic geometry or ordered fields to (commutative, von Neumann) regular rings (with unity).


2007 ◽  
Vol 06 (05) ◽  
pp. 779-787 ◽  
Author(s):  
SONIA L'INNOCENTE ◽  
MIKE PREST

Let M be a Verma module over the Lie algebra, sl 2(k), of trace zero 2 × 2 matrices over the algebraically closed field k. We show that the ring, RM, of definable scalars of M is a von Neumann regular ring and that the canonical map from U( sl 2(k)) to RM is an epimorphism of rings. We also describe the Ziegler closure of M. The proofs make use of ideas from the model theory of modules.


1994 ◽  
Vol 169 (3) ◽  
pp. 863-873
Author(s):  
F.A. Arlinghaus ◽  
L.N. Vaserstein ◽  
H. You

Sign in / Sign up

Export Citation Format

Share Document